Qualifying Exam in Differential Equations

March 2023
Solve all problems
(1) (E, Old problem, 20 points) Let $f:[-r, r] \rightarrow \mathbb{R}$ be a C^{1} function with

$$
A=\frac{1}{2 r} \int_{-r}^{r} f(y) d y .
$$

Prove that

$$
\int_{-r}^{r}(f(x)-A)^{2} d x \leq(2 r)^{2} \int_{-r}^{r}\left(f^{\prime}(x)\right)^{2} d x .
$$

(2) (E, Old problem, 20 points) Let $x \in \mathbb{R}^{n}$, prove that the Laplace equation $\Delta u(x)=0$ is rotation invariant.
(3) Let $a \in \mathbb{R}$ and $f(t, x)$ satisfy the equation $\partial_{t} f+a \partial_{x} f=\partial_{x}^{2} f$ with initial condition $f(0, x)=u_{0}(x),-\infty<x<\infty$.
a. (E, 10 points) Use the Fourier transform method to solve f.
b. (D, 15 points) If $b \in \mathbb{R}$ and g satisfy the equation $\partial_{t} g+b \partial_{x} g=\partial_{x}^{2} g$ with initial condition $g(0, x)=u_{0}(x)$. Assume that $u_{0} \in L_{x}^{1}$, prove that

$$
\|f-g\|_{L_{x}^{\infty}} \leq C|b-a|\left\|u_{0}\right\|_{L_{x}^{1}}
$$

for some constant $C>0$ independent of u_{0} and a, b.
(4) (M, 15 points) Let $t>0, x \in \mathbb{R}^{3}, v \in \mathbb{R}^{3}$ and $f(t, x, v)$ satisfy the transport equation $\partial_{t} f+v \cdot \nabla_{x} f=0$ with initial condition $f(0, x, v)=f_{0}(x, v)$. Prove that

$$
\left\|\|f\|_{L_{v}^{1}}\right\|_{L_{x}^{\infty}} \leq C t^{-3}\| \| f_{0}\left\|_{L_{v}^{\infty}}\right\|_{L_{x}^{1}}
$$

for some constant $C>0$.
(5) (M, 20 points) Let u solves the one dimensional wave equation

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}=0, \quad x \in \mathbb{R}, t>0 \\
u(0, x)=g(x), u_{t}(0, x)=h(x), \quad x \in \mathbb{R},
\end{array}\right.
$$

where g and h are smooth and have compact support. Show that

$$
\int_{-\infty}^{\infty} u_{t}^{2}(x, t) d x=\int_{-\infty}^{\infty} u_{x}^{2}(x, t) d x
$$

for large enough time t.

