Qualifying Examination in General Algebra

September 2023

- Attempt all problems. Show all your work and justify all your answers.
- Easier: 1, 2, 3; Medium: 4, 5, 6; Harder: 7
- \mathbb{Z} denotes the ring of integers, and \mathbb{Q} denotes the field of rational numbers.

1. (10 points) Let G be a group, and let G^{\prime} be the commutator subgroup of G. Suppose H is a normal subgroup of G. Prove that G / H is abelian if and only if $G^{\prime} \subseteq H$.
2. (15 points) Let p be an odd prime. Classify up to isomorphism all groups of order $2 p$.
3. (15 points) Let E, F, and K be fields. Prove that if E is an algebraic extension of F and F is an algebraic extension of K, then E is an algebraic extension of K.
4. (15 points) Let $\mathbb{Q}[x, y]$ be the ring of polynomials in the variables x and y with coefficients in \mathbb{Q}. Determine if the rings $\mathbb{Q}[x, y] /\left(x^{2}-y\right)$ and $\mathbb{Q}[x, y] /\left(x^{2}-y^{4}\right)$ are isomorphic.
5. (15 points) Find the Galois group of the polynomial $x^{4}-3$ over \mathbb{Q}.
6. (15 points) Let R be a commutative ring with identity $1_{R} \neq 0$, and let A and B be R-modules. We denote by $\operatorname{Hom}_{R}(A, B)$ the R-module consisting of all R module homomorphisms from A to B. Let V be a free R-module of finite rank and $V^{*}=\operatorname{Hom}_{R}(V, R)$. Prove that there is a canonical isomorphism

$$
\operatorname{Hom}_{R}\left(A \otimes_{R} V, B\right) \cong \operatorname{Hom}_{R}\left(A, V^{*} \otimes_{R} B\right)
$$

of R-modules.
7. (15 points) Let $\mathbb{Z}[x]$ be the ring of polynomials in the variable x with coefficients in \mathbb{Z}. Determine all prime ideals \mathfrak{p} of $\mathbb{Z}[x]$ such that $\mathfrak{p} \cap \mathbb{Z} \neq\{0\}$.

