Qualifying Exam – Differential Geometry Fall 2023

- 1. Let M and N be smooth manifolds, and let $f: M \to N$ be a smooth map.
 - (a) (10 points) (Easy) Show that if f is a submersion, then f is an open map.
 - (b) (10 points) (Easy) Show that if M and N have the same dimension and f is an immersion, then f is a local diffeomorphism.
- 2. Let M be a smooth manifold. A critical point of a smooth function $f: M \to \mathbb{R}$ is a point $p \in M$ such that $df_p = 0$. Let T_pM be the tangent space to M at p.
 - (a) (10 points) (Easy) Let p be a critical point of f. Define $H: T_pM \times T_pM \to \mathbb{R}$ by

$$H(v,w) = XYf(p)$$

where X, Y are smooth vector fields on M and $X_p = v$, $Y_p = w$. Show that H is well-defined, bilinear, and symmetric.

(b) (10 points) (Medium) Let $\gamma : \mathbb{R} \to M$ be a curve such that $\gamma(0) = p$ and $\gamma'(0) = v$. Show that

$$H(v,v) = \frac{d^2(f \circ \gamma)}{dt^2}(0).$$

- 3. (15 points) (Medium) Given the fact that every vector field on S^2 must vanish somewhere, show that S^2 has no Lie group structure.
- 4. (15 points) (Medium) Consider the map $\hat{F}: S^2 \subset \mathbb{R}^3 \to \mathbb{R}^6$ given by

$$\hat{F}: (x, y, z) \mapsto (x^2, y^2, z^2, \sqrt{2}yz, \sqrt{2}zx, \sqrt{2}xy).$$

Prove that \hat{F} gives rise to a smooth embedding $F : \mathbb{R}P^2 \to \mathbb{R}^6$.

- 5. Consider a smooth map $f: S^3 \to S^2$.
 - (a) (10 points) (Easy) Let α be a 2-form on S^2 such that $\int_{S^2} \alpha = 1$. Show that there exists a 1-form η on S^3 such that $f^*\alpha = d\eta$.
 - (b) (10 points) (Easy) Show that the value of the integral $\int_{S^3} \eta \wedge d\eta$ is independent of the choices of α and η . (Hence it depends only on f, and is called the **Hopf** invariant of f.)
 - (c) (10 points) (Medium) Show that the Hopf invariant of f depends only on the homotopy class of f.