Qualifying Examination: Partial Differentiation Equations

Autumn, 2023

Do all the problems and show all your work. (E: easy, M: moderate, D:difficult)

1. (E, 10 points)

Let $g(t)$ be a C^{1} function defined in the interval $[a, b]$. Please prove that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} g(t) \sin (n t) d t=0
$$

2. (E, 15 points)

Please solve the Cauchy problem

$$
\left\{\begin{array}{l}
u u_{x}+y u_{y}=x, \quad(x, y) \in R^{2} \\
u(x, 1)=2 x .
\end{array}\right.
$$

3. (M, 15 points)

Please use the Fourier transform method to solve the initial value problem

$$
u_{t}=K u_{x x}, \quad-\infty<x<\infty, \quad t>0
$$

and

$$
u(x, 0)=\left\{\begin{array}{l}
a_{1}, x<0 \\
a_{2}, x>0 .
\end{array}\right.
$$

Here a_{1}, a_{2} and K are given constants.
Is the solution unique? And please find $\lim _{t \rightarrow \infty} u(x, t)$.
4. (M, 15 points)

Consider the wave equation

$$
\left\{\begin{array}{l}
u_{t t}=c^{2}\left(u_{x x}+u_{y y}+u_{z z}\right) \\
u(X, 0)=\phi(X), \\
u_{t}(X, 0)=\psi(X)
\end{array}\right.
$$

Here $X=(x, y, z)$ is in R^{3}. Kirchhoff's formula gives the solution

$$
u\left(X_{0}, t_{0}\right)=\frac{1}{4 \pi c^{2} t_{0}} \iint_{S} \psi(X) d S+\frac{\partial}{\partial t_{0}}\left[\frac{1}{4 \pi c^{2} t_{0}} \iint_{S} \phi(X) d S\right]
$$

where S is the sphere of center X_{0} with radius $c t_{0}$.
(a) What is Huygens' Principle?
(b) Please explain why Huygens' Principle is not valid in two dimensional spaces.
(c) If ϕ and ψ vanish outside a sphere with radius R, where does u has to vanish?
5. (D, 15 points)

Let $u(x)$ be a real-valued function defined in $R^{3} . x=\left(x_{1}, x_{2}, x_{3}\right)$ and $D u(x)=\left(\frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}, \frac{\partial u}{\partial x_{3}}\right)$. Assume that $p \in[1,3) . p^{*}$ is defined as $\frac{1}{p^{*}}=\frac{1}{p}-\frac{1}{3}$.

Please prove that there exists a constant C, depending only on p, such that

$$
\|u\|_{L^{p^{*}}\left(R^{3}\right)} \leq C\|D u\|_{L^{p}\left(R^{3}\right)}
$$

for all $u \in C_{c}^{1}\left(R^{3}\right)$.
6. (E, 15 points)
(a) Let $u(x, y)$ be a harmonic function defined in a set D of R^{2}. Please state the maximum principle for u. (You don't need to prove it.)
(b) A function $u(x, y)$ is subharmonic in D if $\Delta u \geq 0$. Is the maximum principle true for subharmonic functions?
(c) Is the maximum principle true for the wave euqations?
7. (M, 15 points) $f(x)$ and $g(x)$ are continuous functions satisfying $f(x+1)=f(x)$ and $g(x+1)=g(x)$. Please prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g(n x) d x=\left(\int_{0}^{1} f(x) d x\right)\left(\int_{0}^{1} g(x) d x\right)
$$

