Qualifying Examination in General Algebra

March 2024

- Attempt all problems. Show all your work and justify all your answers.
- Easier: 1, 2, 3, 6; Medium: 4, 5; Harder: 7

1. (15 points) Let G be a simple group of order 168. Determine the number of elements of order 7 in G.
2. (15 points) Let G be a nonabelian group of order p^{3}, where p is a prime. Prove that the center of G is of order p.
3. (10 points) Give an example of a nonzero homomorphism $f: R \rightarrow S$ of rings with identity such that $f\left(1_{R}\right) \neq 1_{S}$. Here 1_{R} and 1_{S} denote the multiplicative identities of R and S, respectively.
4. (15 points) Let R be a commutative ring with identity $1_{R} \neq 0$, and let $R[x]$ be the ring of polynomials in x over R. Let $f=\sum_{i=0}^{n} a_{i} x^{i} \in R[x]$, where n is a positive integer. Prove that if f is a unit in $R[x]$, then a_{0} is a unit in R and a_{1}, \ldots, a_{n} are nilpotent elements of R.
5. (15 points) Let n be a positive integer, and let R be a commutative ring with identity $1_{R} \neq 0$. Suppose F is a free R-module of rank n with basis $\left\{v_{1}, \ldots, v_{n}\right\}$ and A is a nonzero R-module. Prove that every element of $A \otimes_{R} F$ can be written uniquely in the form $\sum_{i=1}^{n} a_{i} \otimes v_{i}$, where $a_{1}, \ldots, a_{n} \in A$.
6. (15 points) Let E, F, and K be fields. Prove that if E is an algebraic extension of F and F is an algebraic extension of K, then E is an algebraic extension of K.
7. (15 points) Let \mathbb{C} denote the field of complex numbers. Suppose t is transcendental over \mathbb{C}. Is $\mathbb{C}\left(t, \sqrt{1-t^{2}}\right)$ a purely transcendental extension of \mathbb{C} ?
