Ph.D. QUALIFYING EXAM, DIFFERENTIAL GEOMETRY

(E: easy; M: moderate; D: difficult)

- 1. (E. 10 points) Let M, N be two smooth manifolds and $f : M \to N$ be an immersion. Suppose that $\dim(M) = \dim(N)$. Prove that f is a local diffeomorphism.
- 2. (30 points) Recall that $Gl(n; \mathbb{R})$ is the collection of invertible *n* by *n* real-valued matrices equipped with the induced topology of \mathbb{R}^{n^2} , and $O(n; \mathbb{R})$ is the collection of orthogonal matrices equipped with the induced topology of \mathbb{R}^{n^2} .
 - a. (M. 20 points) Prove that $Gl(n;\mathbb{R})$ and $O(n;\mathbb{R})$ are smooth submanifolds and compute the dimension.
 - b. (M. 10 points) Find $T_e(O(n; \mathbb{R}))$ where e is the identity matrix.
- 3. (E. 20 points) Prove that $H^1_{dB}(S^1 \times I)$ is non-trivial.

4. (20 points) Prove the following two theorems.

- a. (M. 10 points) Let M be a compact manifold. Then every smooth vector bundle $\pi : E \to M$ is a subbundle of a trivial bundle.
- b. (D. 10 points) Prove that every smooth vector bundle $\pi : E \to M$ is a pull-back of a tautological bundle of Grassmannian Gr(m; n), i.e., there exists a smooth map $f : M \to Gr(m; n)$ such that $E \simeq f^*(F)$ where F is the tautological bundle of Gr(m; n).
- 5. (20 points) Let (M, g) be a Riemannian manifold.
 - a. (M. 10 points) Write down the definition of Levi-Civita connection (Denote by ∇).
 - b. (D. 10 points) Let $\{e_i\}$ be a local frame of the tangent bundle induced by a coordinate chart.Write down the definition of Christoffel symbols Γ_{ij}^k and prove that

$$\nabla_{e_i} e_j = \Gamma_{ij}^k e_k$$

Date: March 7, 2024.