E: Easy M: Moderate D: Difficult

1. (E, 10%; 2021, Fall) Let $f \in C^{1}\left(\mathbb{R}^{n}\right)$ and suppose that for each open ball B, there exists a solution of the bounded value problem

$$
\begin{cases}-\Delta u=f & \text { in } B \\ \frac{\partial u}{\partial \mathbf{n}}=0 & \text { on } \partial B\end{cases}
$$

where \mathbf{n} is the outward unit normal vector field to ∂B. Show that $f \equiv 0$.
2. (E, 10\%; 2018, Spring) Solve the first order linear equation

$$
y u_{x}+u_{y}=u, \quad(x, y) \in \mathbb{R}^{2}
$$

with $u(0, x)=x^{2}$.
3. (E, 10\%) Let $U \subset \mathbb{R}$ be an interval and assume $u, v \in L_{l o c}^{1}(U)$. We say that v is the weak derivative of u if

$$
\int_{U} u(x) \varphi^{\prime}(x) d x=-\int_{U} v(x) \varphi(x) d x \quad \text { for all } \varphi \in C_{0}^{\infty}(U)
$$

Let

$$
u(x)= \begin{cases}x, & 0<x \leq 1 \\ 2, & 1<x<2\end{cases}
$$

Does u have a weak derivative over the domain $U=(0,2)$?
4. (E, $15 \% ; 2022$, Fall) Solve the initial value problem

$$
\begin{array}{ll}
u_{t t}=u_{x x}+\cos x, & -\infty<x<\infty, \quad t>0 \\
u(x, 0)=\sin x, & -\infty<x<\infty \\
u_{t}(x, 0)=1+x, & -\infty<x<\infty
\end{array}
$$

5. (E, 20\%; 2023, Spring) Let $f \in C^{1}([0, L])$ be a real-valued function with $f(0)=f(L)=0$. Show that

$$
\int_{0}^{L} f^{2} d x \leq\left(\frac{L}{\pi}\right)^{2} \int_{0}^{L}\left(\frac{d f}{d x}\right)^{2} d x
$$

and the equality holds if and only if

$$
f(x)=c \sin \left(\frac{\pi x}{L}\right)
$$

for all $x \in[0, L]$, where c is a constant.
6. (M, 20\%; 2022, Fall) Use the Fourier transform method to solve the initial value problem

$$
\begin{cases}u_{t}=u_{x x}, & -\infty<x<\infty, t>0 \\ u(x, 0)=f(x), & -\infty<x<\infty\end{cases}
$$

where $f \in C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$, and show that $u(x, t)$ satisfies the following inequality

$$
\|u\|_{p}(t) \leq \frac{1}{(4 \pi t)^{\frac{1}{2}\left(\frac{1}{q}-\frac{1}{p}\right)}}\|f\|_{q}, \quad t>0
$$

for $1 \leq q \leq p \leq \infty$. (Note that the L^{p}, L^{q} norms are with respect to the variable x.)
7. (M, 15\%; 2018, Spring) Find a traveling wave equation of the viscous Burgers' equation

$$
u_{t}+u u_{x}=u_{x x}, \quad x \in \mathbb{R}, \quad t>0
$$

That is, $u(x, t)=v(x-c t)$ with $c \in \mathbb{R}$ and $v \in C^{2}(\mathbb{R})$ such that $v(s) \rightarrow 0$ as $s \rightarrow-\infty$ and $v(s) \rightarrow 1$ as $s \rightarrow \infty$.

