Algebra Qualifying Examination, September 2002

Answer all the problems and show all your works.

1. (15%) Let G be a nonabelian group of order 6. Show that G is isomorphic to S_3, the symmetry group of degree 3.

2. (15%) Let G be a group of order 56. Suppose that G has no element of order 14. Show that the Sylow 2-subgroup of G is normal in G.

3. (20%) Let G be a group of order 231. Show that the Sylow 11-subgroup of G is in the center of G.

4. (15%) Let R be a commutative ring with identity and

$$f(x) = a_0 + a_1 x + \ldots + a_n x^n \in R[x].$$

Show that $f(x)$ is a unit in $R[x]$ if and only if a_0 is a unit in R and a_1, \ldots, a_n are nilpotent elements in R.

5. (10%) Let R be an integral domain and $a, b \in R$. Suppose $a^m = b^m$ and $a^n = b^n$, where m, n are positive integers and $(m, n) = 1$. Prove that $a = b$.

6. (10%) An integral domain D is called a Euclidean domain if there is a function $d: D \setminus \{0\} \to \mathbb{Z}^+$ such that

(1) $d(a) \leq d(ab)$ for any $a, b \in D \setminus \{0\}$

(2) for any $a \in D$ and $b \neq 0$, there are $q, r \in D$ such that $a = qb + r$, where $d(r) < d(b)$ or $r = 0$.

Show that $d(a) = d(e)$ if and only if a is a unit.

7. (15%) (i) Show that a finite extension E of F is also an algebraic extension of F.

(ii) Let K be a field and E an extension of K. Suppose $u, v \in E$ are roots of an irreducible polynomial $f(x) \in K[x]$. Show that there is a unique field isomorphism $\sigma: K(u) \to K(v)$ such that $\sigma|K = id_K$ and $\sigma(u) = v$.

The End