Ph.D. Qualifying Examination (2005.9.23)
Algebra

Answer all the problems and show all your works.

1. (15%) Show that no group of order 48 is simple.

2. (10%) Let H be a subgroup of a finite group G with $[G : H] = p$, where p is the smallest prime dividing the order of G. Prove that H is normal in G. (Hint: Consider the action of G on the coset of H.)

3. (10%) Let R be a commutative Noetherian ring with identity. Show that $R[x]$ is also Noetherian.

4. (15%) Let $A \subseteq R$ be two integral domains containing identity such that R is integral over A. Let P and Q be prime ideals in R with $P \subseteq Q$. Show that $P = Q$ if $P \cap A = Q \cap A$.

5. (10%) Find all prime ideals in the ring $\mathbb{C}[x, y]/(xy - 1)$, where \mathbb{C} is the field of all complex numbers.

6. (15%) Let R and S be two rings. Let M be a right R-module, N a right S-module and P a R-S-bimodule with R acting on the left and S acting on the right. Show that there is an isomorphism of abelian groups from $\text{Hom}_S(M \otimes_R P, N)$ to $\text{Hom}_R(M, \text{Hom}_S(P, N))$.

7. (10%) Let \mathbb{Z}_4 is a cyclic group of order 4. We consider \mathbb{Z}_4 to be a \mathbb{Z}-module.
 (i) (5%) Find a projective \mathbb{Z}-module P and a surjective \mathbb{Z}-homomorphism from P to \mathbb{Z}_4.
 (ii) (5%) Find an injective \mathbb{Z}-module J and an injective \mathbb{Z}-homomorphism from \mathbb{Z}_4 to J.

8. (15%) Let E be a splitting field over \mathbb{Q} of the equation $f(x) = x^4 - 5$, where \mathbb{Q} is the field of all rational numbers.
 (i) (10%) Determine the Galois group of E over \mathbb{Q}.
 (ii) (5%) Find all the intermediate fields K between E and \mathbb{Q} satisfying $[E : K] = 2$.