Name and Student ID: \qquad

Homework 10, Analytic Geometry and Matrices

Properties of Invertible Transformations/Matrices

1. Can a $m \times n$ matrix, with $m \neq n$, be invertible? Answer with sufficient supporting reasons.
2. Prove that if $T^{2}=T \circ T=0$, then T is not invertible.

Computations of Inverses

1. Find the inverse matrices of
(a) $\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$.
(b) $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.
(c) $\left(\begin{array}{cccc}1 & 0 & 1 & 1 \\ 1 & 1 & -1 & 2 \\ 2 & 0 & 1 & 0 \\ 0 & -1 & 1 & -3\end{array}\right)$.
2. Compute the ranks of the following matrices
(a) $\left(\begin{array}{ccc}0 & -2 & 4 \\ 1 & 1 & -1 \\ 2 & 4 & -5\end{array}\right)$.
(b) $\left(\begin{array}{cccc}1 & 2 & 1 & 0 \\ 2 & 5 & 5 & 1 \\ -2 & -3 & 0 & 3 \\ 3 & 4 & -2 & -3\end{array}\right)$.
3. Express the invertible matrix

$$
\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 0 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

as a product of elementary matrices.

