Row Reduced Echelon Form

1. Determine, with sufficient reasons, if the following matrices are in row reduced echelon form:

Systems of Linear Equations

1. Describe the set of solutions of the following systems of linear equations using Gaussian eliminations.

(a)
$$\begin{cases} x_1 - 2x_2 - x_3 = 1\\ 2x_1 - 3x_2 + x_3 = 6\\ 3x_1 - 5x_2 = 7\\ x_1 + 5x_3 = 9 \end{cases}$$

(b)
$$\begin{cases} 2x_1 - 2x_2 - x_3 + 6x_4 - 2x_5 = 1\\ x_1 - x_2 + x_3 + 2x_4 - x_5 = 2\\ 4x_1 - 4x_2 + 5x_3 + 7x_4 - x_5 = 6 \end{cases}$$

2. Solve the following system of linear equations, given that the coefficient matrix is invertible:

 $\begin{cases} x_1 + 2x_2 - x_3 = 1\\ x_1 + x_2 + x_3 = 6\\ 2x_1 - 2x_2 + x_3 = 4 \end{cases}$

3. Prove that if the coefficient matrix $A \in Mat_{m \times n}$ has rank m, then the set of solutions is non-empty. That is, there is at least one solution to the system.

Invertibility and Determinants

1. Are the following linear transformations invertible?

(a)
$$T\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}2x+y\\3x-2y\end{pmatrix}$$

(b)
$$T\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}2x+2y+2z\\3x+2y+2z\\x+3y-2z\end{pmatrix}$$

2. Prove that for an upper triangular matrix, that is, $A = (a_{ij}) \in Mat_{n \times n}$ with $a_{ij} = 0 \forall i > j$, we have

$$det A = \prod_{i=1}^{n} a_{ii} = a_{11}a_{22}\cdots a_{nn}.$$

- 3. Finish the proof mentioned in class: for any $A, B \in Mat_{n \times n}, \det(AB) = \det A \cdot \det B$.
- 4. Using previous two problems, compute the determinant of the following matrix. A computation straight from definition will only yield very little points.

$$\begin{pmatrix} 1 & 2 & 3 & 3 & 4 \\ 2 & -1 & 0 & 1 & 7 \\ 3 & 0 & 1 & 2 & 8 \\ 2 & 2 & 3 & 3 & 5 \\ 1 & -2 & 3 & 9 & 5 \end{pmatrix}$$

5. Prove that rotation in \mathbb{R}^2 preserves area. That is, if R_{θ} is the rotation transformation by θ , the parallelogram spanned by u, v is equal to the parallelogram spanned by $R_{\theta}u$ and $R_{\theta}v$.