## Row Reduced Echelon Form

1. Determine, with sufficient reasons, if the following matrices are in row reduced echelon form:
(a) $\left(\begin{array}{ccccccccc}1 & 2 & 1 & 4 & -9 & 0 & 5 & 7 & 4 \\ 0 & 0 & 0 & 1 & 4 & 0 & 3 & 8 & -10 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
(b) $\left(\begin{array}{llll}1 & 2 & 3 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right)$

## Systems of Linear Equations

1. Describe the set of solutions of the following systems of linear equations using Gaussian eliminations.
(a) $\left\{\begin{array}{l}x_{1}-2 x_{2}-x_{3}=1 \\ 2 x_{1}-3 x_{2}+x_{3}=6 \\ 3 x_{1}-5 x_{2}=7 \\ x_{1}+5 x_{3}=9\end{array}\right.$
(b) $\left\{\begin{array}{l}2 x_{1}-2 x_{2}-x_{3}+6 x_{4}-2 x_{5}=1 \\ x_{1}-x_{2}+x_{3}+2 x_{4}-x_{5}=2 \\ 4 x_{1}-4 x_{2}+5 x_{3}+7 x_{4}-x_{5}=6\end{array}\right.$
2. Solve the following system of linear equations, given that the coefficient matrix is invertible:

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}-x_{3}=1 \\
x_{1}+x_{2}+x_{3}=6 \\
2 x_{1}-2 x_{2}+x_{3}=4
\end{array}\right.
$$

3. Prove that if the coefficient matrix $A \in M a t_{m \times n}$ has rank $m$, then the set of solutions is non-empty. That is, there is at least one solution to the system.

## Invertibility and Determinants

1. Are the following linear transformations invertible?
(a) $T\binom{x}{y}=\binom{2 x+y}{3 x-2 y}$
(b) $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}2 x+2 y+2 z \\ 3 x+2 y+2 z \\ x+3 y-2 z\end{array}\right)$
2. Prove that for an upper triangular matrix, that is, $A=\left(a_{i j}\right) \in M a t_{n \times n}$ with $a_{i j}=$ $0 \forall i>j$, we have

$$
\operatorname{det} A=\Pi_{i=1}^{n} a_{i i}=a_{11} a_{22} \cdots a_{n n}
$$

3. Finish the proof mentioned in class: for any $A, B \in M a t_{n \times n}, \operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$.
4. Using previous two problems, compute the determinant of the following matrix. A computation straight from definition will only yield very little points.

$$
\left(\begin{array}{ccccc}
1 & 2 & 3 & 3 & 4 \\
2 & -1 & 0 & 1 & 7 \\
3 & 0 & 1 & 2 & 8 \\
2 & 2 & 3 & 3 & 5 \\
1 & -2 & 3 & 9 & 5
\end{array}\right)
$$

5. Prove that rotation in $\mathbb{R}^{2}$ preserves area. That is, if $R_{\theta}$ is the rotation transformation by $\theta$, the parallelogram spanned by $u, v$ is equal to the parallelogram spanned by $R_{\theta} u$ and $R_{\theta} v$.
