Name and Student ID: \qquad

Homework 13, Analytic Geometry and Matrices

Change of Basis

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by

$$
T\binom{x}{y}=\binom{2 x+y}{x-3 y}
$$

with respect to $\beta=\left\{e_{1}, e_{2}\right\}$, the standard basis of \mathbb{R}^{2}. Also let

$$
\beta^{\prime}=\left(\binom{1}{1},\binom{1}{2}\right)
$$

be an alternative basis. Write down $[T]_{\beta^{\prime}}^{\beta^{\prime}}$.
2. If $A, B \in \operatorname{Mat}_{n \times n}$ are similar, prove that
(a) $\operatorname{rank} A=\operatorname{rank} B$.
(b) nullity $A=$ nullity B.
(c) $\operatorname{det} A=\operatorname{det} B$.

Diagonalization

1. For the following matrices, determine if they are diagonalizable. For each diagonalizable matrix A, find change of coordinate matrix Q so that $Q^{-1} A Q$ is diagonal matrix.
(a) $\left(\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right)$.
(b) $\left(\begin{array}{lll}7 & -4 & 0 \\ 8 & -5 & 0 \\ 6 & -6 & 3\end{array}\right)$.
(c) $\left(\begin{array}{ccc}3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1\end{array}\right)$.
2. Prove, by applying induction on k, that if $\lambda_{1}, \ldots, \lambda_{k}$ are distinct eigenvalues of $T: V \rightarrow$ V, with v_{1}, \ldots, v_{k} corresponding eigenvectors, then v_{1}, \ldots, v_{k} are linearly independent.
3. Prove that for a linear transformation $T: V \rightarrow V$ on an n-dimensional vector space, if the characteristic polynomial of T has n distinct real roots, then T is diagonalizable.
