Name and Student ID: _

Homework 13, Analytic Geometry and Matrices

Change of Basis

1. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by

$$T\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}2x+y\\x-3y\end{pmatrix}$$

with respect to $\beta = \{e_1, e_2\}$, the standard basis of \mathbb{R}^2 . Also let

$$\beta' = \left(\begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2 \end{pmatrix} \right)$$

be an alternative basis. Write down $[T]^{\beta'}_{\beta'}$.

- 2. If $A, B \in Mat_{n \times n}$ are similar, prove that
 - (a) rank $A = \operatorname{rank} B$.
 - (b) nullity A = nullity B.
 - (c) det $A = \det B$.

Diagonalization

1. For the following matrices, determine if they are diagonalizable. For each diagonalizable matrix A, find change of coordinate matrix Q so that $Q^{-1}AQ$ is diagonal matrix.

(a)
$$\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$$
.
(b) $\begin{pmatrix} 7 & -4 & 0 \\ 8 & -5 & 0 \\ 6 & -6 & 3 \end{pmatrix}$.
(c) $\begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix}$

- 2. Prove, by applying induction on k, that if $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of $T: V \to V$, with v_1, \ldots, v_k corresponding eigenvectors, then v_1, \ldots, v_k are linearly independent.
- 3. Prove that for a linear transformation $T: V \to V$ on an *n*-dimensional vector space, if the characteristic polynomial of T has n distinct real roots, then T is diagonalizable.