Name and Student ID:

Homework 1 Supplementary Problems

1. What is wrong with the "set"

$$
A=\{x \mid x \notin x\} ?
$$

Is anything of the form $\{x \mid P(x)\}$ a set? (Please google "Russell's paradox").
2. Consider the unit sphere

$$
\mathbb{S}^{2}:=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\} \subset \mathbb{R}^{3} .
$$

and the "north pole" $N=(0,0,1) \in \mathbb{S}^{2}$. Consider the mapping

$$
\Phi: \mathbb{S}^{2} \backslash N \rightarrow \mathbb{R}^{2}
$$

defined by

$$
\Phi(x, y, z)=\frac{(x, y)}{1-z} .
$$

(a) Is Φ well defined on it domain?
(b) Place the center of \mathbb{S}^{2} at the origin $(0,0,0)$. For every $(x, y, z) \in \mathbb{S}^{2} \backslash N$, write down the parametric equation of the line l going through N and (x, y, z).
(c) What is the point of intersection between l and $x y$ plane (ie. $z=0$)? Any relation to $\Phi(x, y, z)$?
(d) Explain, loosely using languages introduced in class and perhaps some drawing, that Φ defines a coordinate for \mathbb{R}^{2}.
This is the well known "stereographic projective coordinates" of \mathbb{R}^{2}, globally defined for all \mathbb{R}^{2}. For 10 point extra credit, construct the stereographic projective coordinates for \mathbb{R}^{n}.

