Name and Student ID: _

Solutions for Homework 1 Supplementary Problems

1. What is wrong with the "set"

$$A = \{x \mid x \notin x\}?$$

Is anything of the form $\{x \mid P(x)\}$ a set? (Please google "Russell's paradox").

Solution: If A is a set, any object either belongs to A or does not belong to A. In particular, either $A \in A$ or $A \notin A$. However, from the definition of A, it implies that

$$A \in A \iff A \notin A,$$

which is a contradiction. Therefore, not every class of the form $\{x \mid P(x)\}$ is a set. A rigorous and mathematically precise definition of "set" actually does not exist! The most commonly (and recently) accepted version of set theory is to view sets *axiomatically*, that is, define sets to be certain objects with certain properties (e.g. subset, equality, ... etc) without any justification. The school of set theory is known as Zermelo-Fraenkel set theory (with axiom of choice).

2. Consider the unit sphere

$$\mathbb{S}^2 := \{ (x, y, z) \mid x^2 + y^2 + z^2 = 1 \} \subset \mathbb{R}^3.$$

and the "north pole" $N = (0, 0, 1) \in \mathbb{S}^2$. Consider the mapping

$$\Phi: \mathbb{S}^2 \backslash N \to \mathbb{R}^2$$

defined by

$$\Phi(x, y, z) = \frac{(x, y)}{1 - z}.$$

(a) Is Φ well defined on it domain?

Solution: Yes. The only point of problem (singularity) is when z = 1 on \mathbb{S}^2 , which is exactly the north pole N we removed.

(b) Place the center of \mathbb{S}^2 at the origin (0,0,0). For every $(x, y, z) \in \mathbb{S}^2 \setminus N$, write down the parametric equation of the line l going through N and (x, y, z).

Solution: The line l going through (0,0,1) and (x, y, z) has parametric equation

$$(x(t), y(t), z(t)) = t(x, y, z - 1).$$

Note that z is not free here, but subject to the defining equation $x^2 + y^2 + z^2 = 1$ for \mathbb{S}^2 .

(c) What is the point of intersection between l and xy plane (ie. z = 0)? Any relation to $\Phi(x, y, z)$?

Solution: For *l* to cross xy plane, z(t) = t(1 - z) has to be zero and therefore at $t = \frac{1}{z-1}$. Plugging into the parametric equation of *l*, we see that the point of intersection is

$$\left(\frac{z}{1-z},\frac{y}{1-z},0\right).$$

In other words, l crosses xy plane at $(\Phi(x, y, z), 0)$.

(d) Explain, loosely using languages introduced in class and perhaps some drawing, that Φ defines a coordinate for \mathbb{R}^2 .

Solution: $\Phi: \mathbb{S}^2 \setminus N \to \mathbb{R}^2$ is one-to-one (and onto), with the inverse map $\Phi^{-1}: \mathbb{R}^2 \to \mathbb{S}^2 \setminus N$ given by

$$\Phi^{-1}(x,y) = \left(\frac{2x}{x^2 + y^2 + 1}, \frac{2y}{x^2 + y^2 + 1}, 1 - \frac{2}{x^2 + y^2 + 1}, \right).$$

Readers may readily check that $\Phi^{-1}(x, y) \in \mathbb{S}^2 \setminus N$.

For a pictorial explanation of one-to-one, just observe that the line through a point (x, y, 0) and $N \in \mathbb{S}^2$ passes through $\mathbb{S}^2 \setminus N$ exactly once and therefore the mapping Φ is one-to-one. If there are two distinct points on P_1 and $P_2 \in \mathbb{S}^2 \setminus N$ corresponding to one (x, y, 0), then P_1 , P_2 and N are three distinct collinear points on a sphere which is impossible (a line can only intersect a sphere at 0, 1, or 2 points).

This is the well known "stereographic projective coordinates" of \mathbb{R}^2 , globally defined for all \mathbb{R}^2 . For 10 point extra credit, construct the stereographic projective coordinates for \mathbb{R}^n .

Solution: The stereographic projective coordinate for $\Phi : \mathbb{S}^n \setminus N \to \mathbb{R}^n$ is, naturally,

$$\Phi(x_1,\ldots,x_{n+1}) = \frac{1}{1-x_{n+1}}(x_1,\ldots,x_n).$$