Name and Student ID:

Solutions for Homework 1 Supplementary Problems

1. What is wrong with the "set"

$$
A=\{x \mid x \notin x\} ?
$$

Is anything of the form $\{x \mid P(x)\}$ a set? (Please google "Russell's paradox").

Solution: If A is a set, any object either belongs to A or does not belong to A. In particular, either $A \in A$ or $A \notin A$. However, from the definition of A, it implies that

$$
A \in A \Longleftrightarrow A \notin A
$$

which is a contradiction. Therefore, not every class of the form $\{x \mid P(x)\}$ is a set. A rigorous and mathematically precise definition of "set" actually does not exist! The most commonly (and recently) accepted version of set theory is to view sets axiomatically, that is, define sets to be certain objects with certain properties (e.g. subset, equality, ... etc) without any justification. The school of set theory is known as Zermelo-Fraenkel set theory (with axiom of choice).
2. Consider the unit sphere

$$
\mathbb{S}^{2}:=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\} \subset \mathbb{R}^{3}
$$

and the "north pole" $N=(0,0,1) \in \mathbb{S}^{2}$. Consider the mapping

$$
\Phi: \mathbb{S}^{2} \backslash N \rightarrow \mathbb{R}^{2}
$$

defined by

$$
\Phi(x, y, z)=\frac{(x, y)}{1-z}
$$

(a) Is Φ well defined on it domain?

Solution: Yes. The only point of problem (singularity) is when $z=1$ on \mathbb{S}^{2}, which is exactly the north pole N we removed.
(b) Place the center of \mathbb{S}^{2} at the origin $(0,0,0)$. For every $(x, y, z) \in \mathbb{S}^{2} \backslash N$, write down the parametric equation of the line l going through N and (x, y, z).

Solution: The line l going through $(0,0,1)$ and (x, y, z) has parametric equation

$$
(x(t), y(t), z(t))=t(x, y, z-1)
$$

Note that z is not free here, but subject to the defining equation $x^{2}+y^{2}+z^{2}=1$ for \mathbb{S}^{2}.
(c) What is the point of intersection between l and $x y$ plane (ie. $z=0)$? Any relation to $\Phi(x, y, z)$?

Solution: For l to cross $x y$ plane, $z(t)=t(1-z)$ has to be zero and therefore at $t=\frac{1}{z-1}$. Plugging into the parametric equation of l, we see that the point of intersection is

$$
\left(\frac{z}{1-z}, \frac{y}{1-z}, 0\right)
$$

In other words, l crosses $x y$ plane at $(\Phi(x, y, z), 0)$.
(d) Explain, loosely using languages introduced in class and perhaps some drawing, that Φ defines a coordinate for \mathbb{R}^{2}.

Solution: $\Phi: \mathbb{S}^{2} \backslash N \rightarrow \mathbb{R}^{2}$ is one-to-one (and onto), with the inverse map $\Phi^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2} \backslash N$ given by

$$
\Phi^{-1}(x, y)=\left(\frac{2 x}{x^{2}+y^{2}+1}, \frac{2 y}{x^{2}+y^{2}+1}, 1-\frac{2}{x^{2}+y^{2}+1},\right)
$$

Readers may readily check that $\Phi^{-1}(x, y) \in \mathbb{S}^{2} \backslash N$.
For a pictorial explanation of one-to-one, just observe that the line through a point $(x, y, 0)$ and $N \in \mathbb{S}^{2}$ passes through $\mathbb{S}^{2} \backslash N$ exactly once and therefore the mapping Φ is one-to-one. If there are two distinct points on P_{1} and $P_{2} \in \mathbb{S}^{2} \backslash N$ corresponding to one $(x, y, 0)$, then P_{1}, P_{2} and N are three distinct colinear points on a sphere which is impossible (a line can only intersect a sphere at 0,1 , or 2 points).

This is the well known "stereographic projective coordinates" of \mathbb{R}^{2}, globally defined for all \mathbb{R}^{2}. For 10 point extra credit, construct the stereographic projective coordinates for \mathbb{R}^{n}.

Solution: The stereographic projective coordinate for $\Phi: \mathbb{S}^{n} \backslash N \rightarrow \mathbb{R}^{n}$ is, naturally,

$$
\Phi\left(x_{1}, \ldots, x_{n+1}\right)=\frac{1}{1-x_{n+1}}\left(x_{1}, \ldots, x_{n}\right)
$$

