Name and Student ID:

Homework 3, Analytic Geometry and Matrices

Problems concerning coordinates:

1. Consider cylindrical coordinate $\Phi: r \theta u \rightarrow x y z$. Sketch the pre-image, in $r \theta u$ space, of the region bounded by $x^{2}+y^{2} \leq 1, y \geq 0, y \leq x$, and $0 \leq z \leq 1$ in $x y z$ space. (without concern on the boundary requirement for one-to-one property of Φ):
2. Consider spherical coordinate $\Phi: \rho \theta \phi \rightarrow x y z$. Sketch the pre-image, in $\rho \theta \phi$ space, of the lower half of the ball $x^{2}+y^{2}+z^{2} \leq 1$ in $x y z$ space. (without concern on the boundary requirement for one-to-one property of Φ):

Problems concerning conic sections:

1. Given $\phi \in \mathbb{R}$, prove, using polar coordinates, that the map

$$
R(x, y)=(x \cos \phi-y \sin \phi, x \sin \phi+y \cos \phi)
$$

rotates every point on \mathbb{R}^{2} by an angle ϕ, counterclockwise. What is the inverse of R ?
2. Write down a rotation $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that takes two opposite points $\pm(\alpha, \beta)$ to two opposite points on $\pm(c, 0)$ on x-axis. What is c ?
3. Using previous two problems, write down the equation of the ellipse with foci $\pm(\alpha, \beta)$ and length of major axis $2 a$ for some $a \geq \sqrt{\alpha^{2}+\beta^{2}}$.
4. Write down the equation of an ellipse with general foci (p, q), and (r, s) and length of major axis $2 a$ for some $a \geq \frac{1}{2} \sqrt{(p-r)^{2}+(q-s)^{2}}$. You do NOT need to expand nor simplify your final quadratic polynomial.
5. Repeat problem 4 for hyperbola.
6. (Extra Credit - 15 points) Write down the equation for parabola with focus (p, q) and directrix $y=a x+b$. Again, you do NOT need to expand nor simplify your final quadratic polynomial.

