Name and Student ID: $_$

Homework 4, Analytic Geometry and Matrices

Problems concerning conics:

1. Prove the statement claimed in class: every point P on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a > b > 0, satisfies

$$\overline{PF} = e\overline{PD}.$$

Here, e is the eccentricity, F and D is a set of focus and directrix on the same side.

- 2. Find the eccentricities, foci, and directrices of the following conic sections:
 - (a) 6x² + 9y² = 54
 (b) 9x² + 36x 16y² = 126

(c)
$$y^2 - 2x = 4$$

- 3. Sketch the following curves, given as an image of Φ of an $r\theta$ equation. If the curve is a conic, specify foci and directrices:
 - (a) $r = \frac{4}{2-2\cos\theta}$ (b) $r = \frac{12}{3+3\sin\theta}$ (c) $r = \frac{25}{10-5\cos(\theta-\frac{\pi}{3})}$ (d) $r\cos\left(\theta+\frac{\pi}{6}\right) = 2$

Problems concerning quadric surfaces:

- 1. Sketch the traces of the following equations on \mathbb{R}^3 . Be sure to label intersections with all coordinate axes:
 - (a) $x^2 = 1 y z^2$
 - (b) $y^2 x^2 = z$
 - (c) $16y^2 + 9z^2 = 4x^2$
- 2. Which of the traces above is a graph of a function? Be sure to provide the corresponding function.