\qquad

Homework 5, Analytic Geometry and Matrices

Determination of Traces:

1. Each defining equation below corresponds to only one possible trace from sketches a through 1 below. Match it and provide sufficient reasons.
(a) $x=2 z^{2}-2 y^{2}$.
(b) $9 x^{2}+4 y^{2}+2 z^{2}=36$.
(c) $x=-y^{2}-z^{2}$.
(d) $z=-2 x^{2}-y^{2}$.

718 Chapter 12: Vectors and the Geometry of Space

Exercises 12.6

Matching Equations with Surfaces
In Exercises 1-12, match the equation with the surface it defines Also, identify each surface by type (paraboloid, ellipsoid, etc.) The surfaces are labeled (a)-(1).

1. $x^{2}+y^{2}+4 z^{2}=10$
2. $9 y^{2}+z^{2}=16$
3. $x=y^{2}-z^{2}$
4. $x^{2}+2 z^{2}=8$
5. $x=z^{2}-y^{2}$
6. $x^{2}+4 z^{2}=y^{2}$
```
\[
\text { 2. } z^{2}+4 y^{2}-4 x^{2}=4
\]
\[
\text { 4. } y^{2}+z^{2}=x^{2}
\]
\[
\text { 6. } x=-y^{2}-z^{2}
\]
\[
\text { 8. } z^{2}+x^{2}-y^{2}=1
\]
\[
\text { 10. } z=-4 x^{2}-y^{2}
\]
\[
\text { 12. } 9 x^{2}+4 y^{2}+2 z^{2}=36
\]
```

a.

c.

d.

f.

g.

i.

Drawing
Sketch the surfaces in Exercises 13-44
CYLINDERS

17. $9 x^{2}+y^{2}+z^{2}=9$
19. $4 x^{2}+9 y^{2}+4 z^{2}=36$

PARABOLOIDS AND CONES
21. $z=x^{2}+4 y^{2}$
23. $x=4-4 y^{2}-z^{2}$
25. $x^{2}+y^{2}=z^{2}$

HYPERBOLOIDS
27. $x^{2}+y^{2}-z^{2}=1$
29. $z^{2}-x^{2}-y^{2}=1$

HYPERBOLIC PARABOLOIDS
31. $y^{2}-x^{2}=z$

ASSORTED
33. $z=1+y^{2}-x^{2}$
35. $y=-\left(x^{2}+z^{2}\right)$
37. $x^{2}+y^{2}-z^{2}=4$
39. $x^{2}+z^{2}=1$
41. $z=-\left(x^{2}+y^{2}\right)$
43. $4 y^{2}+z^{2}-4 x^{2}=4$
18. $4 x^{2}+4 y^{2}+z^{2}=16$
20. $9 x^{2}+4 y^{2}+36 z^{2}=36$
22. $z=8-x^{2}-y^{2}$
24. $y=8-x^{2}-y^{2}$
26. $4 x^{2}+9 z^{2}=9 y^{2}$
28. $y^{2}+z^{2}-x^{2}=1$
30. $\left(y^{2} / 4\right)-\left(x^{2} / 4\right)-z^{2}=1$
32. $x^{2}-y^{2}=z$
34. $4 x^{2}+4 y^{2}=z^{2}$
36. $16 x^{2}+4 y^{2}=1$
38. $x^{2}+z^{2}=y$
40. $16 y^{2}+9 z^{2}=4 x^{2}$
2. $y^{2}-x^{2}-z^{2}=1$
44. $x^{2}+y^{2}=z$

Theory and Examples
45. a. Express the area A of the cross-section cut from the ellipsoid $x^{2}+\frac{y^{2}}{4}+\frac{z^{2}}{9}=1$
by the plane $z=c$ as a function of c. (The area of an ellipse with semiaxes a and b is $\pi a b$.)
b. Use slices perpendicular to the z-axis to find the volume of the ellipsoid in part (a)
c. Now find the volume of the ellipsoid

More Change of Coordinates:

1. Find appropriate change of coordinate that turns the regions below into regions of constant bounds (i.e. rectangles or boxes)
(a) $9 x^{2}+16 y^{2}+4 z^{2}-8 z-140 \leq 0$ and $z \geq 1$.
(b) Region in \mathbb{R}^{2} bounded by $y_{1}=3 x+8, y_{2}=-2 x+7, y_{3}=3 x+12$, and $y_{4}=-2 x+10$.
2. A 1-torus in \mathbb{R}^{3} is formed by rotating the circle on $y z$ plane with radius 1 and center $(0,2,0)$

around z-axis to form a "donut":

(a) Construct a change of coordinate that turns the torus into a square $[0,2 \pi) \times[0,2 \pi)$. (Hint: Rotate the circle on $y z$ plane by θ, around z-axis and figure out another angle ϕ so that (θ, ϕ) determines the points on the torus.)
(b) Sketch the images of $\theta=\pi$ and $\phi=\frac{\pi}{2}$ on the torus under this change of coordinate.
(c) Construct a change of coordinate that turns the region bounded by torus into a box $[0,2 \pi) \times[0,2 \pi) \times[0,1]$.

Vectors in \mathbb{R}^{3} :

1. Prove that two lines having two distinct points in common must be the same line. That is, $x \neq x^{\prime}$ and $x, x^{\prime} \in L \cap L^{\prime} \Rightarrow L=L^{\prime}$. (Use the definition of lines and conditions of equality stated in class.) Use this fact to prove that the line $(1,-1,0)+\mathbb{R}(1,1,1)$ is the same as the line given by the intersection of two planes $x+y-2 z=0$ and $2 x-y-z=3$.
