Name and Student ID: _____

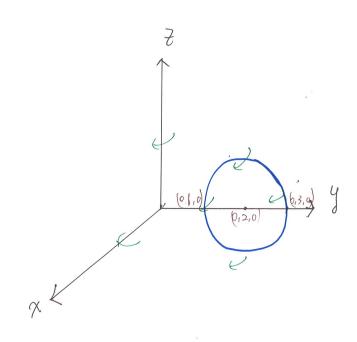
Homework 5, Analytic Geometry and Matrices

Determination of Traces:

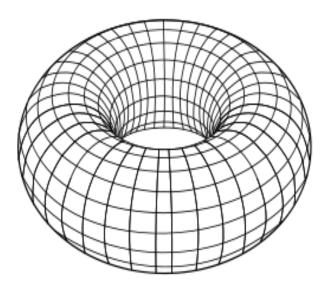
= 36.

1. Each defining equation below corresponds to only one possible trace from sketches a through l below. Match it and provide sufficient reasons.

(a)
$$x = 2z^2 - 2y^2$$
.
(b) $9x^2 + 4y^2 + 2z^2$


(c)
$$x = -y^2 - z^2$$
.

(d)
$$z = -2x^2 - y^2$$
.


k. z I. ↑	z .↑
32	
x	
Drawing	
sketch the surfaces in Exercises 13–44.	
YLINDERS	
3. $x^2 + y^2 = 4$ 14. $z = y$	$v^2 - 1$
5. $x^2 + 4z^2 = 16$ 16. $4x^2 + 4z^2 = 16$	
LLIPSOIDS	, y = 50
7. $9x^2 + y^2 + z^2 = 9$ 18. $4x^2 + $	$+ 4y^2 + z^2 =$
	$+4y^2 + 36z^2$
ARABOLOIDS AND CONES	2
	$3 - x^2 - y^2$
	$1 - x^2 - z^2$
5. $x^2 + y^2 = z^2$ 26. $4x^2 + $	$-9z^2 = 9y^2$
YPERBOLOIDS	
	$z^2 - x^2 = 1$
	$) - (x^2/4) -$
PERBOLIC PARABOLOIDS	
$y^2 - x^2 = z 32. x^2 - y$	$v^2 = z$
SORTED	
$ z = 1 + y^2 - x^2 y = -(x^2 + z^2) 34. 4x^2 + x^2 36. 16x^2 + x^2 $	
$x^{2} + y^{2} - z^{2} = 4$ $x^{2} + z^{2} = 1$ 38. $x^{2} + z^{2}$ 40. $16y^{2} + z^{2}$	
$z = -(x^2 + y^2)$ 40. $10y^2 + 40$	
$4y^2 + z^2 - 4x^2 = 4$ 44. $x^2 + y^2$	
eory and Examples	2
a. Express the area A of the cross-section	1 cut from the
$x^{2} + \frac{y^{2}}{4} + \frac{z^{2}}{9} = 1$	
by the plane $z = c$ as a function of c. (7) with semiaxes a and b is πab .)	The area of a
b. Use slices perpendicular to the <i>z</i> -axis to	to find the vol
the ellipsoid in part (a).	- 1110 110 70
c. Now find the volume of the ellipsoid	
$\frac{x^2}{2} + \frac{y^2}{2} + \frac{z^2}{2} = 1$	
	a sphere of re
a = b = c?	a sphere of R
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$ Does your formula give the volume of

More Change of Coordinates:

- 1. Find appropriate change of coordinate that turns the regions below into regions of constant bounds (i.e. rectangles or boxes)
 - (a) $9x^2 + 16y^2 + 4z^2 8z 140 \le 0$ and $z \ge 1$.
 - (b) Region in \mathbb{R}^2 bounded by $y_1 = 3x+8$, $y_2 = -2x+7$, $y_3 = 3x+12$, and $y_4 = -2x+10$.
- 2. A 1-torus in \mathbb{R}^3 is formed by rotating the circle on yz plane with radius 1 and center (0, 2, 0)

around z-axis to form a "donut":

- (a) Construct a change of coordinate that turns the torus into a square $[0, 2\pi) \times [0, 2\pi)$. (Hint: Rotate the circle on yz plane by θ , around z-axis and figure out another angle ϕ so that (θ, ϕ) determines the points on the torus.)
- (b) Sketch the images of $\theta = \pi$ and $\phi = \frac{\pi}{2}$ on the torus under this change of coordinate.
- (c) Construct a change of coordinate that turns the region bounded by torus into a box $[0, 2\pi) \times [0, 2\pi) \times [0, 1]$.

Vectors in \mathbb{R}^3 :

1. Prove that two lines having two distinct points in common must be the same line. That is, $x \neq x'$ and $x, x' \in L \cap L' \Rightarrow L = L'$. (Use the definition of lines and conditions of equality stated in class.) Use this fact to prove that the line $(1, -1, 0) + \mathbb{R}(1, 1, 1)$ is the same as the line given by the intersection of two planes x + y - 2z = 0 and 2x - y - z = 3.