Name and Student ID:

Homework 6, Analytic Geometry and Matrices

Subspaces and Spans:

1. Determine, with sufficient reason, whether the following subset of \mathbb{R}^{3} is a subspace.
(a) $W=\{(x, y, z) \mid x=3 y$ and $z=-y\}$
(b) $W=\{(x, y, z) \mid x=z+2\}$
(c) $W=\{(x, y, z) \mid 2 x-y+z=0\}$
(d) $W=\{(x, y, z) \mid x+6 y-9 z=1\}$
(e) $W=\left\{(x, y, z) \mid x^{2}+y=0\right\}$
2. If U, V are subspaces of $\left(\mathbb{R}^{n},+, \cdot\right)$, prove that
(a) $U \cap V$ is a subspace.
(b) $U+V:=\{u+v \mid u \in U$ and $v \in V\}$ is a subspace.
(c) $U \cup V$ is NOT necessarily a subspace. (Give an example that it fails to be a subspace).
3. Determine, for each part, if the first vector is in the span of the other two vectors.
(a) $(-2,0,3)^{T},(1,3,0)^{T},(2,4,1)^{T}$.
(b) $(3,4,1)^{T},(1,-2,1)^{T},(-2,-1,1)^{T}$.
(c) $(-2,2,2)^{T},(1,2,-1)^{T},(-3,-3,3)^{T}$.

Plane Geometry

1. Cross product of two vectors $u, v \in \mathbb{R}^{3}$ satisfy $|u \times v|=|u||v| \sin \theta$, where θ is the angle between $\mathbb{R} u$ and $\mathbb{R} v$. That is, the $|u \times v|$ is the area of the parallelogram spanned by u and v. Prove this fact for vectors on $x y$ plane. That is, when $u=\left(u_{1}, u_{2}, 0\right)^{T}$ and $v=\left(v_{1}, v_{2}, 0\right)^{T}$.
2. Prove that the distance from a point $\left(x_{0}, y_{0}, z_{0}\right)^{T}$ to the plane given by $a x+b y+c z+d=0$ is

$$
\frac{\left|a x_{0}+b y_{0}+c z_{0}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

