Name and Student ID:

Homework 7, Analytic Geometry and Matrices

Linear (In-)dependence

1. For the following sets of vectors, determine all values of a so that they are linearly dependent:
(a) $\left\{(1,1)^{T},(2, a)^{T}\right\}$
(b) $\left\{(1 . a)^{T},(a, 4)^{T}\right\}$
(c) $\left\{(1,1,1)^{T},(1,2,-1)^{T},(1,-1, a)^{T}\right\}$
2. Prove that a set of mutually orthogonal nonzero vectors, that is, $\left\{v_{1}, \ldots, v_{m} \mid v_{i} \neq\right.$ 0 and $v_{i} \cdot v_{j}=0$ if $\left.i \neq j\right\}$, are linearly independent.

Basis, Dimension, and Coordinate Representation

1. Let $U \subset \mathbb{R}^{5}$ be the solution space to the system of equations

$$
\left\{\begin{array}{l}
3 x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=0 \\
2 x_{1}+5 x_{2}-x_{3}+x_{4}-x_{5}=0 \\
3 x_{1}+x_{2}-2 x_{3}-x_{4}-x_{5}=0
\end{array}\right.
$$

(a) U is a subspace of \mathbb{R}^{5}.
(b) Find the dimension of U.
(c) Find a basis of U.
2. Prove the converse of Theorem 2 in class. That is, if $B=\left\{v_{1}, \ldots, v_{r}\right\} \subset W$ is a subset of the subspace W so that every element of W can be written uniquely as a linear combination of elements in B, then B is a basis of W. (This equivalent condition is then used as definition for basis when the vector space is of infinite dimension.)
3. Consider the subset $B=\left\{(1,2,1)^{T},(2,1,1)^{T},(3,0,3)^{T}\right\} \subset \mathbb{R}^{3}$.
(a) Prove that B forms a basis of \mathbb{R}^{3}.
(b) Write down the coordinate representation of e_{1}, e_{2}, e_{3}, , the standard basis vectors for \mathbb{R}^{3}, with respect to the basis B.
(c) Write down the coordinate representation of a general vector v, with standard coordinate representation $(x, y, z)^{T}$, with respect to the basis B.

