Name and Student ID: $_$

Homework 8, Analytic Geometry and Matrices

1. Determine, with sufficient reasons, whether the following linear transformations are linear.

(a)
$$T\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} x+y\\ z-y\\ x+y+2 \end{pmatrix}$$
.
(b) $T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x\cos\phi - y\sin\phi\\ x\sin\phi + y\cos\phi \end{pmatrix}$ for some $\phi \in \mathbb{R}$.

2. Given a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that

$$T\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}1\\0\\2\end{pmatrix}$$
 and $T\begin{pmatrix}2\\3\end{pmatrix} = \begin{pmatrix}1\\-1\\4\end{pmatrix}$.

Find $T\begin{pmatrix} 8\\11 \end{pmatrix}$.

3. Find the nullity and rank of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$T\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}x-y\\2z\end{pmatrix}.$$

- 4. Given a linear transformation $T: V \to W$. Prove that
 - (a) If $\dim V > \dim W$, T can not be one-to-one.
 - (b) If $\dim V < \dim W$, T can not be onto.
- 5. Determine if the following maps are onto.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^4$ defined by

$$T\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x+y\\x-y\\x+2y\\2y-4x\end{pmatrix}$$

(b) $T: \mathbb{R}^4 \to \mathbb{R}^4$ defined by

$$T\begin{pmatrix} x\\ y\\ z\\ w \end{pmatrix} = \begin{pmatrix} x+z\\ y\\ 2z+w\\ x-w \end{pmatrix}.$$

A direct sum decomposition of a vector space V consists of two subspaces W_1 , W_2 of V, so that $W_1 \cap W_2 = \{0\}$ and $V = W_1 + W_2$. Recall that

$$W_1 + W_2 = \{ w_1 + w_2 \mid w_1 \in W_1 \text{ and } w_2 \in W_2 \}.$$

This decomposition of V is denoted by

$$V = W_1 \oplus W_2.$$

- 6. Prove that if $V = W_1 \oplus W_2$, every element $v \in V$ can be written uniquely as $v = w_1 + w_2$, where $w_i \in W_i$.
- 7. On \mathbb{R}^4 , let $W_1 = Sp((1,0,0,0)^T, (0,1,0,0)^T)$ and $W_2 = Sp((1,1,1,1,1)^T, (0,1,1,-1)^T)$.
 - (a) Prove that $\mathbb{R}^4 = W_1 \oplus W_2$.
 - (b) Define $T : \mathbb{R}^4 \to \mathbb{R}^4$ by $T(v) = v_1 + v_2$, where $v_1 \in W_1$ and $v_2 \in W_2$ is the direct sum decomposition of v defined above. Explain why is T well defined, that is, why does it return only one output for each input.
 - (c) Write down $[T]^{\gamma}_{\beta}$, where $\beta = \{e_1, e_2, e_3, e_4\}$ is the standard bases of \mathbb{R}^4 and $\gamma = \{e_1, e_2, (1, 1, 1, 1)^T, (0, 1, 1, -1)^T\}.$
 - (d)

$$T\begin{pmatrix} x\\ y\\ z\\ w \end{pmatrix} =?$$

(e) Prove that T is an isomorphism.