Name and Student ID: \qquad

Homework 8, Analytic Geometry and Matrices

1. Determine, with sufficient reasons, whether the following linear transformations are linear.
(a) $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}x+y \\ z-y \\ x+y+2\end{array}\right)$.
(b) $T\binom{x}{y}=\binom{x \cos \phi-y \sin \phi}{x \sin \phi+y \cos \phi}$ for some $\phi \in \mathbb{R}$.
2. Given a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that

$$
T\binom{1}{1}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right) \text { and } T\binom{2}{3}=\left(\begin{array}{c}
1 \\
-1 \\
4
\end{array}\right)
$$

Find $T\binom{8}{11}$.
3. Find the nullity and rank of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{x-y}{2 z}
$$

4. Given a linear transformation $T: V \rightarrow W$. Prove that
(a) If $\operatorname{dim} V>\operatorname{dim} W, T$ can not be one-to-one.
(b) If $\operatorname{dim} V<\operatorname{dim} W, T$ can not be onto.
5. Determine if the following maps are onto.
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ defined by

$$
T\binom{x}{y}=\left(\begin{array}{c}
x+y \\
x-y \\
x+2 y \\
2 y-4 x
\end{array}\right)
$$

(b) $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ defined by

$$
T\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{c}
x+z \\
y \\
2 z+w \\
x-w
\end{array}\right) .
$$

A direct sum decomposition of a vector space V consists of two subspaces W_{1}, W_{2} of V, so that $W_{1} \cap W_{2}=\{0\}$ and $V=W_{1}+W_{2}$. Recall that

$$
W_{1}+W_{2}=\left\{w_{1}+w_{2} \mid w_{1} \in W_{1} \text { and } w_{2} \in W_{2}\right\}
$$

This decomposition of V is denoted by

$$
V=W_{1} \oplus W_{2}
$$

6. Prove that if $V=W_{1} \oplus W_{2}$, every element $v \in V$ can be written uniquely as $v=w_{1}+w_{2}$, where $w_{i} \in W_{i}$.
7. On \mathbb{R}^{4}, let $W_{1}=\operatorname{Sp}\left((1,0,0,0)^{T},(0,1,0,0)^{T}\right)$ and $W_{2}=\operatorname{Sp}\left((1,1,1,1)^{T},(0,1,1,-1)^{T}\right)$.
(a) Prove that $\mathbb{R}^{4}=W_{1} \oplus W_{2}$.
(b) Define $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ by $T(v)=v_{1}+v_{2}$, where $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$ is the direct sum decomposition of v defined above. Explain why is T well defined, that is, why does it return only one output for each input.
(c) Write down $[T]_{\beta}^{\gamma}$, where $\beta=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is the standard bases of \mathbb{R}^{4} and $\gamma=$ $\left\{e_{1}, e_{2},(1,1,1,1)^{T},(0,1,1,-1)^{T}\right\}$.
(d)

$$
T\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)=?
$$

(e) Prove that T is an isomorphism.

