Name and Student ID: \qquad

Homework 9, Analytic Geometry and Matrices

1. Continue from Problem 7 in Homework 8, consider the following map:

$$
P: V \rightarrow V
$$

defined by

$$
T(v)=v_{2} .
$$

This map is called the projection onto W_{2} along W_{1}.
(a) Check that T is a well-defined linear transformation.
(b) Write down $[T]_{\gamma}^{\gamma}$, where γ is the basis given in in that problem.
(c) Prove that $T^{n}:=\underbrace{T \circ \cdots \circ T}_{\mathrm{n} \text { times }}=T$ for all n.
2. Prove that $\mathcal{L}(V, W)$, with addition and scalar multiplication defined in class, is a vector space. (Need to check the 8 requirements V1-V8 for a vector space).
3. Let V and W be vector spaces, and let $S, T \in \mathcal{L}(V, W)$ be nonzero linear transformations between them. If $\mathcal{R}(S) \cap \mathcal{R}(T)=\{0\}$, prove that S and T are linear independent in the vector space $\mathcal{L}(V, W)$.
4. Let

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 0 & 1 \\
1 & -1 & 1
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 0 & 3 \\
1 & -2 & 1 \\
1 & -3 & 1
\end{array}\right)
$$

Find elementary operations that transform A into B, B into I_{3}, the identity matrix. Express (but do not actually multiply out) the matrix that transform A into I_{3}.

An $n \times n$ matrix $A=\left(a_{i j}\right)$ is called upper triangular if all the entries below the diagonal are zero. That is, $a_{i j}=0 \forall i>j$.
5. Prove that a product of two upper triangular matrices is upper triangular, and therefore a product of any number of upper triangular matrices is upper triangular. Remember the fact that when bases are fixed, matrices are in one-to-one correspondence with linear transformations.
6. Find elementary operation that transform

$$
A=\left(\begin{array}{ccc}
2 & 2 & 4 \\
4 & 0 & 1 \\
6 & -1 & 4
\end{array}\right)
$$

into a upper triangular matrix.

