Let $L=q+\mathbb{R} p$ and $L^{\prime}=q^{\prime}+\mathbb{R} p^{\prime}$. Suppose $x, x^{\prime} \in L \cap L^{\prime}$ and $x \neq x^{\prime}$. Therefore, we have

$$
\begin{gather*}
x=q+\alpha p \tag{0.1}\\
x=q^{\prime}+\beta p^{\prime} \tag{0.2}\\
x^{\prime}=q+\alpha^{\prime} p \tag{0.3}
\end{gather*}
$$

and

$$
\begin{equation*}
x^{\prime}=q^{\prime}+\beta^{\prime} p^{\prime} \tag{0.4}
\end{equation*}
$$

Since $x \neq x^{\prime}$, it is necessary that $\alpha \neq \alpha^{\prime}$ and $\beta \neq \beta^{\prime}$. (0.1)-(0.1) gives

$$
\begin{equation*}
q-q^{\prime}=\beta p^{\prime}-\alpha p \tag{0.5}
\end{equation*}
$$

and (0.3)-(0.4) gives

$$
\begin{equation*}
q-q^{\prime}=\beta^{\prime} p^{\prime}-\alpha^{\prime} p \tag{0.6}
\end{equation*}
$$

These two equations implies that $\left(\beta-\beta^{\prime}\right) p^{\prime}=\left(\alpha-\alpha^{\prime}\right) p$. Since $\alpha \neq \alpha^{\prime}$ and $\beta \neq \beta^{\prime}$, it implies that $p=\lambda p^{\prime}$, where $\lambda=\frac{\beta-\beta^{\prime}}{\alpha-\alpha^{\prime}}$ and therefore $\mathbb{R} p=\mathbb{R} p^{\prime}$. Then either (0.5) or (0.6) implies that $q-q^{\prime} \in \mathbb{R} p$.

