Names and Student IDs: \qquad

Homework 10 Calculus 1

1. Recall that a function is convex if for all $a<b$, we have

$$
f(\lambda a+(1-\lambda) b) \leq \lambda f(a)+(1-\lambda) f(b) \forall \lambda \in[0,1] .
$$

(The inequality says that over any interval $[a, b]$, the graph of $f(x)$ is below the line connecting ($a, f(a)$ and $(b, f(b))$. See the hint of Homework 8 for an illustration.) Prove that if a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex, then the graph $y=f(s)$ is always above any of its tangent line. That is, if $P(x)$ is the equation of tangent line to $y=f(x)$ at $x=a$, then $f(x) \geq P(x)$ for all x.
2. Rudin Chapter 5, Problem 14. (You might find Problem 1 useful.)
3. Rudin Chapter 5, Problem 15. (Don't worry about the "To show..." at the end of the problem.)
4. Rudin Chapter 5, Problem 17. (Hint: first show that $P_{0}=P_{1}=0$, and therefore $P_{2}=a x^{2}$.)
5. Rudin Chapter 5, Problem 25 part (a) - part (c). (For part (b), the result follows easily from (a) if we know that x_{n} is convergent, why? For part (c), apply Taylor's Theorem at x_{n}. You might find Problem 2 might be useful.)
6. Rudin Chapter 5, Problem 26. (Start with $|f(x)|=|f(x)-f(a)|=\cdots$.)
7. Salas 4.11: 17, 20.
8. Salas 11:5: 10, 28, 48.
9. Salas 11.6: 15, 28, 42.
10. Salas 12.6: 12, 16, 18, 22, 32.
11. Salas 12.7: 10, 22, 29.

