Names and Student IDs: \qquad

Homework 3 Calculus 1

1. Rudin Chapter 3, Exercise 3.
2. Rudin Chapter 3, Exercise 5. For simplification, assume that sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are both bounded.
3. Given a sequence $\left\{a_{n}\right\}$ of real numbers and define

$$
b_{k}=\sup _{n \geq k} a_{n}
$$

Prove that
(a)

$$
\lim _{k \rightarrow \infty} b_{k}=\inf _{k} b_{k} .
$$

(b)

$$
\lim _{k \rightarrow \infty} b_{k}=\limsup _{n} a_{n}
$$

Similar arguments show that (you don't have to do it)

$$
\liminf _{n} a_{n}=\lim _{k \rightarrow \infty} \inf _{n \geq k} a_{n}=\sup _{k \rightarrow \infty} \inf _{n \geq k} a_{n} .
$$

4. Given a nonempty subset $E \subset \mathbb{R}$ that is bounded above (so that $\sup E$ exists), prove that there exists a sequence $\left\{a_{n}\right\} \subset E$ converging to $\sup E$.
5. Given two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ of real numbers with $a_{n} \leq b_{n}$. Prove that
(a) $\limsup \sin _{n} a_{n} \leq \limsup b_{n} b_{n}$.
(b) $\liminf _{n} a_{n} \leq \liminf _{n} b_{n}$.
(c) If both sequences are convergent, then $\lim _{n} a_{n} \leq \lim _{n} b_{n}$.

Also, give counterexample to the statement $\lim \sup _{n} a_{n} \leq \liminf _{n} b_{n}$.
6. If $a_{n}>0$, and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=L>0$, then $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=L$. (Note that the statement is also true for $L=0$).
7. Find the limit of
(a) $\sqrt[n]{n}$.
(b) $\sqrt[n]{n^{5}+n^{4}}$.
(c) $\sqrt[n]{\frac{n!}{n^{n}}}$.

Hint: Use problem 6.
8. Rudin Chapter 3, Exercise 4.
9. Salas 11.4: 7, 20, 23, 24.
10. Salas 12.2: 3, 7, 9, 14, 29.

