Names and Student IDs: \qquad

Homework 6 Calculus 1

1. The function e^{x} has two identical definitions (shown in class):

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} .
$$

Without using differentiation, do the followings:
(a) Show the series above converges absolutely for all x.
(b) Using either definition, show that for all $x, y \in \mathbb{R}, e^{x+y}=e^{x} e^{y}$.
(c) Show that for all $x \in \mathbb{R}, e^{-x}=\frac{1}{e^{x}}$, and therefore $e^{x-y}=\frac{e^{x}}{e^{y}}$.
(d) Show that $e^{x}>0$ for all $x \in \mathbb{R}$.
(e) Show that for all $x, y \in \mathbb{R},\left(e^{x}\right)^{y}=e^{x y}$. (Note that you can't raise $1+\frac{x}{n}$ above to the power $n y$, since that is what we are proving here.
(f) Show that e^{x} is strictly increasing. That is, $x>y \Rightarrow e^{x}>e^{y}$. (It might be useful to first show that $e^{x}>1 \forall x>0$.)
Note that you are NOT allowed to use any "power rule" you have learnt before. You need to derive them.
2. Salas 12.5: 10, 18, 20, 35, 42.
3. Salas 12.8: 8, 20, 30, 35.

