Names and Student IDs: _

Homework 7 Calculus 1

1. Rudin Chapter 2, Problem 9 (a) - (c), and the following statement:

$$E^{0}(or int(E)) = \bigcup_{G \subset E, G open} G$$

The problem says that E^0 is the *largest* open subset contained in E. (Compare with Theorem 2.27, which says that the closure \overline{E} of E is the *smallest* closed set containing E).

- 2. Prove that
 - (a) $(0,1) \subset \mathbb{R}$ is not compact. (Note: open \neq not closed.)
 - (b) $\{\frac{1}{n}\}_{n=1}^{\infty} \subset \mathbb{R}$ is not compact.
 - (c) $\{\frac{1}{n}\}_{n=1}^{\infty} \cup \{0\} \subset \mathbb{R}$ is compact. It is called the *compactification* of (b).
- 3. Rudin Chapter 4, Problem 1.

For the following two problems, for $f: A \to B$, define

for
$$E \subset A$$
, $f(E) := \{f(x) \mid x \in E\}$

and

for
$$V \subset B$$
, $f^{-1}(V) := \{x \in E \mid f(x) \in V\}.$

4. Prove that the statement

for all closed subset $C \subset \mathbb{R}$, $f^{-1}(C)$ is closed in \mathbb{R}

is equivalent to

for all open subset $E \subset \mathbb{R}, f^{-1}(E)$ is open in \mathbb{R}

It turns out that both statements are equivalent the fact that $f : \mathbb{R} \to \mathbb{R}$ is continuous (will be shown in class).

- 5. Rudin, Chapter 4, Problem 3 with $X = \mathbb{R}$. (It might be useful to prove that $\{a\} \subset \mathbb{R}$ is a closed set $\forall a \in \mathbb{R}$.
- 6. Given $f: [0,1] \to \mathbb{R}$ continuous, and suppose that $f([0,1]) \subset \mathbb{Q}$. Prove that if $f(\frac{1}{2}) = 0$, then f is a constant function.
- 7. Salas 2.4: 6, 14, 26, 29, 34.
- 8. Salas 2.6: 5, 9, 10, 15, 25, 26, 28.