Names and Student IDs:

Homework 8 Calculus 1

- 1. Prove that $f : A \to B$ is continuous if and only if $f^{-1}((a, b))$ is open in A, for every open interval $(a, b) \subset B$.
- 2. If $f : \mathbb{R} \to \mathbb{R}$ satisfies the equation

$$f(x+y) = f(x) + f(y)$$

for all $x, y \in \mathbb{R}$, and f(1) = 1,

- (a) Find the values of f(x) for all $x \in \mathbb{Q}$.
- (b) If in addition f is continuous, show that f(x) = x.
- 3. Rudin Chapter 4, Problem 15. (See Definition 4.28 for monotonic functions.)
- 4. Rudin Chapter 4, Problem 23 (Just prove the first statement).
- 5. Prove that if f(x) is monotonic on [a, b] and satisfies the conclusion of intermediate value theorem, then f(x) is continuous.
- 6. Rudin Chapter 5, Problem 1. (You may assume the fact that $f' \equiv 0 \Rightarrow f$ is constant.)
- 7. Salas 3.1: 9, 14, 18, 35, 45, 52, 59.