Names and Student IDs: \qquad

Homework 8 Calculus 1

1. Prove that $f: A \rightarrow B$ is continuous if and only if $f^{-1}((a, b))$ is open in A, for every open interval $(a, b) \subset B$.
2. If $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the equation

$$
f(x+y)=f(x)+f(y)
$$

for all $x, y \in \mathbb{R}$, and $f(1)=1$,
(a) Find the values of $f(x)$ for all $x \in \mathbb{Q}$.
(b) If in addition f is continuous, show that $f(x)=x$.
3. Rudin Chapter 4, Problem 15. (See Definition 4.28 for monotonic functions.)
4. Rudin Chapter 4, Problem 23 (Just prove the first statement).
5. Prove that if $f(x)$ is monotonic on $[a, b]$ and satisfies the conclusion of intermediate value theorem, then $f(x)$ is continuous.
6. Rudin Chapter 5, Problem 1. (You may assume the fact that $f^{\prime} \equiv 0 \Rightarrow f$ is constant.)
7. Salas 3.1: 9, 14, 18, 35, 45, 52, 59.

