NOTES ON lim sup AND lim inf

Here, I provide a detailed explanation on the consequences of $\limsup_k a_k < \alpha$ and $\limsup_k a_k > \alpha$. There are, of course, analogous statements for \liminf .

Proposition 0.1.

 $\limsup_{k} a_k < \alpha \Rightarrow There \ exists \ N \in \mathbb{N} \ such \ that \ a_k < \alpha \ \forall k \ge N.$

Proof. Since $\limsup_k a_k < \alpha$, there exists $\beta < \alpha$ so that $\limsup_k a_k < \beta < \alpha$. It is then sufficient to show that a_k is eventually $\leq \beta$. That is, there is $N \in \mathbb{N}$ so that $a_k \leq \beta \ \forall k \geq N$. If not, for each $n \in \mathbb{N}$, there exists a_{k_n} so that $a_{k_n} \geq \beta$. All these a_{k_n} 's form a subsequence of $\{a_k\}$. Since $\limsup_k a_k \leq \alpha$, for large enough n, we have

$$\beta \le a_{k_n} \le \alpha$$

and without loss of generality we may assume the bounds are true for all n. By Bolzano-Weirstrass Theorem, a_{k_n} (and so a_k) has a convergent subsequence whose limit is no less than β . This implies that $\limsup_k a_k \geq \beta$, which contradicts the fact $\limsup_k a_k < \beta$.

The converse of the proposition is false. Take, for example, $a_k = 1 - \frac{1}{k}$. Then $a_k < 1 \forall k$, but $\limsup_k a_k = \lim_k a_k = 1 \not< 1$. The partial converse of Proposition 0.1 is the following:

Proposition 0.2.

 $\limsup_{k} a_k > \alpha \Rightarrow \text{ There exists a subsequence } \{a_{k'}\} \subset \{a_k\} \text{ such that } a_{k'} > \alpha \ \forall k'.$

Proof. Pick β so that $\alpha < \beta < \limsup_k a_k$. By definition of $\limsup_k a_k$, there is a convergent subsequence $\{a_{k'}\} \subset \{a_k\}$ so that $a_{k'} \to a \in (\beta, \limsup_k a_k)$ as $k' \to \infty$. Pick ϵ small enough so that $\beta - \epsilon > \alpha$. Since $a_{k'} \to a$, there exists $N \in \mathbb{N}$ so that $a_{k'} > a - \epsilon > \beta - \epsilon > \alpha$ for all $k' \ge N$. The subsequence $\{a_{k'}\}_{k' \ge N}$ is the desired subsequence.

The analogous statements for liminf, which are proved vice versa, are the followings.

Proposition 0.3.

$$\liminf_{k} a_k > \alpha \Rightarrow There \ exists \ N \in \mathbb{N} \ such \ that \ a_k > \alpha \ \forall k \ge N$$

Proposition 0.4.

 $\liminf_k a_k < \alpha \Rightarrow \text{ There exists a subsequence } \{a_{k'}\} \subset \{a_k\} \text{ such that } a_{k'} < \alpha \ \forall k'.$

Of course, all propositions above can be stated equivalently with their contrapositives.

Proposition 0.5.

There exists a subsequence $\{a_{k'}\} \subset \{a_k\}$ such that $a_{k'} \ge \alpha \ \forall k' \Rightarrow \limsup_{k \to \infty} a_k \ge \alpha$.

Proposition 0.6.

There exists $N \in \mathbb{N}$ such that $a_k \leq \alpha \ \forall k \geq N \Rightarrow \limsup_k a_k \leq \alpha$.

Proposition 0.7.

There exists a subsequence $\{a_{k'}\} \subset \{a_k\}$ such that $a_{k'} \leq \alpha \ \forall k' \Rightarrow \liminf_k a_k \leq \alpha$.

Proposition 0.8.

There exists $N \in \mathbb{N}$ such that $a_k \ge \alpha \ \forall k \ge N \Rightarrow \liminf_k a_k \ge \alpha$.