Name and Student ID's:

Homework 1, Advanced Calculus 1

1. Prove Proposition 1.15 of Rudin (page 7).
2. In class we have defined the rational number \mathbb{Q} as the set of equivalence classes:

$$
\mathbb{Q}:=(\mathbb{Z} \times \mathbb{Z} \backslash\{0\}) / \sim,
$$

where $(a, b) \sim(c, d) \Leftrightarrow a d=b c$. Define field operations on \mathbb{Q} by

- $[(a, b)]+[(c, d)]=[(a d+b c, b d)]$.
- $[(a, b)] \cdot[(c, d)]=[(a c, b d)]$.
(a) Show that the operations above are well defined. That is, different choices of representative from the classes give the same equivalence classes on the right hand side.
(b) Prove that \mathbb{Q} with these operations is a field. You do not need to show associativity and commutativity in both operations.

3. Rudin Exercise 6 ab.
4. Rudin Exercise 6 cd.
5. Rudin Exercise 7 abcd.
6. Rudin Exercise 7efg.

The next two problems deal with the decimal expansion of real numbers.
7. Given a real number $x>0$,
(a) prove that there is a largest integer $n_{0} \leq x$. (Use Archimedean property)
(b) Inductively, for each $k \in \mathbb{N}$, let n_{k} be the largest integer so that

$$
n_{k} \leq 10^{k}\left(x-n_{0}-n_{1} 10^{-1}-\cdots-n_{k-1} 10^{-(k-1)}\right)
$$

or equivalently

$$
A_{k}=\sum_{j=0}^{k} n_{j} 10^{-j} \leq x
$$

Show that $0 \leq n_{j} \leq 9$ for all $j>1$.
(c) Prove that the sequence $E=\left\{A_{k}\right\}$ is monotonic and bounded above, and therefore $\lim _{k} A_{k}$ exists and is equal to $\sup E$.
8. (a) Prove that $x=\sup E$.
(b) Eliminating sequences $\left\{n_{j}\right\}$ mentioned above with the property that $n_{j}=9$ for all j after a certain term (which is impossible from its construction anyway), prove that

$$
\sum_{j=0}^{\infty} n_{j} 10^{-j}=\sum_{j=0}^{\infty} m_{j} 10^{-j} \Rightarrow n_{j}=m_{j} \forall j
$$

We have shown that every positive real number may be uniquely expressed by an infinite sequence of integers $\left\{n_{j}\right\}$ with $0 \leq n_{j} \leq 9 \forall j>1$ so that

$$
x=\sum_{j=0}^{\infty} n_{j} 10^{-j}
$$

We usually denote it by

$$
x=n_{0} \cdot n_{1} n_{2} n_{3} \cdots,
$$

and call it the decimal expansion of x. Note that we may replace 10 by any other positive integer $N>1$ and the entire construction holds without any major modification (you may be familiar with the expansion with $N=2$).

