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Homework 11, Advanced Calculus 1
1. Rudin Chapter 8 Exercise 1

Solution: By induction on n, we can readily compute that for each n,

P, (x)

n) _ =1
f(z) = W@mz,

where P, is a polynomial for all z # 0 (do it!).

Then we apply induction again to show that f(")(0) = 0 for all n, where each step uses the following
L’Hospital computation with k € N:
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For n = 1, we have
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Suppose that f(™)(0) = 0, then
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and therefore f("*1)(0) = 0 and the induction is completed.

2. Rudin Chapter 8 Exercise 9a

Solution: Let ay = sy — log N. We show that it is a bounded and monotonic sequence and
therefore convergent.

Since log N = le % dx, or the area under the curve f(z) = % from 1 to N. The number sy can be
seen as the sum of areas of rectangles of base 1 and height %, 1<n<N. In fact, it is U(f, Py) on
[1, N], where Py is the partition of N-equally subdivisions. One may see that for the same partition,
L(f,Py) = sy — 1. Both of these follow from the fact that f is a decreasing function and so the
supremum (infimum) of f occurs at left (right) endpoint.Therefore, log N < sy and log N > sy — 1
and we have

0<sy—logN <1.

That is, ay is bounded. For monotonicity, we have, for all N,

1 /N“1d< 1 L
AN AN = v TSN+l N+1o

since again % is decreasing.
xr




3. Rudin Chapter 8 Exercise 23

Solution: The curve v(¢) in this problem may be written in the polar form

A) = r(t)e®

where r(t) > 0 for all ¢ € [a,b] and 0(¢) € R. Since y(a) = (b), it follows that r(a) = r(b) and
0(b) = 0(a) + 2kn for some k € Z. We will show that Ind(y) = k.
With ~(¢) # 0 Vt, we have

YO O ) = Liroglr(e)) — ioe)).

V@) () - dt
Then, by fundamental theorem of calculus (for complex valued function) and discussion above, we
have
L")

i ). 2w dt = 6(b) — 0(a) =k := Ind(y) € Z.
For [a,b] = [0,27], we have 6(t) = ¢ and it is clear that 6(27) — 6(0) = 27, or Ind(y) = 1.

The quantity is called winding number since it counts how many circles around origin (or a loop
containing origin that can be continuously deformed into a circle) the curve v has travelled during
the time [a, b] with signs (+1 for counterclockwise loop and —1 for clockwise).

4. Rudin Chapter 8 Exercise 24

Solution: Intuitively, if v does not intersect negative real axis, it can never travel a complete loop
and therefore the winding number has to be 0. Precisely, for ¢ € [0, 00), the closed curve

is never zero (otherwise (t) = —c is on the negative real axis). Also, since 7., = v, we have
1" At
Ind(y.) = T/ 7 (¢)
mi Jo V() +c

which tends to 0 as ¢ — oo. However, since the expression above is continuous in ¢ (integral of
a continuous function) and integer valued, it must be constant. It then follows that Ind(y) =
Ind(vy.) =0 for all ¢ > 0.

5. Rudin Chapter 8 Exercise 25

Solution: Following hint, let v = %, then
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since |y1(t) —v2(t)| < |71 (¢)| for all t. Therefore, v(t) never lies on negative real axia and by previous
problem, Ind(y) = 0.

On the other hand, straightforward computations show that

!

Y _% o n

T2 N
and therefore Ind(y) = Ind(y2) — Ind(y1) = 0. The result then follows.

6. Rudin Chapter 8 Exercise 26

Solution: Take trigonometric polynomials P;, P, as in the hint. By triangle inequality, we have
VO = [P(t)] < |y(8) = Pi(t)] < §, or [PL(t)] = v(8)] = § = 5.

Also, we have |Py(t) — Po(t)| < |Pi(t) — v(&)| + |[7(t) — Pa(t)] < g + % = g. The two inequalities we
have so far imply

|P1(t) — Po(t)] < [Pi(t)] Vt

and therefore by Problem 5, Ind(P;) = Ind(P;). We call the common value Ind(7y).

Since both P; and P, have norms > % > 0, they will never be 0. Moreover, P;(a) = P;(b) =
Py(a) = P(b) by Theorem 8.15 (with [a,b] rescaled and translated to [0,27]). Problems 4 and 5
apply to P; and P». We prove the two problems for v not necessarily differentiable.

For Problem 4, if v does not intersect negative real axis, by picking § small enough, Re(v(t)) > 20 > 0
for all ¢t. Therefore, if |y(t) — Pi(t)| < ¢, Py does not intersect negative real axis either and we have
Ind(P;) = 0. Therefore, Ind(y) = 0.

For Problem 5, suppose 71 and 7, satisfy |v1(t) — v2(t)| < |y1(¢)|. Take trigonometric polynomials
Py, P, uniformly converge to y; and ~» respectively. We then have

P, V2 Y2 P, Y2 Py
- <l-—=+|=-—-5<1+][= -5

T
But since P;, P, converge uniformly to 71, 72, there exist Py, P> so that |1 — %&tﬂ < 1 for all ¢.
We may then repeat Problem 5 for P; and P, to conclude that Ind(Py) = Ind(P;) and therefore
Ind(y1) = Ind(y2)
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