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Homework 11, Advanced Calculus 1

1. Rudin Chapter 8 Exercise 1

Solution: By induction on n, we can readily compute that for each n,

f (n)(x) =
Pn(x)

x3n
e

−1

x2 ,

where Pn is a polynomial for all x 6= 0 (do it!).

Then we apply induction again to show that f (n)(0) = 0 for all n, where each step uses the following
L’Hospital computation with k ∈ N:

lim
x→0

e
−1

x2

xk
= lim
x→0

x−k

e
−1

x2

=
k

2
lim
x→0

x−k+2

e
−1

x2

= · · · = 0

For n = 1, we have

f ′(0) = lim
x→0

f(x)− f(0)

x
= lim
x→0

f(x)− f(0)

x
= lim
x→0

e
−1

x2

x
= 0.

Suppose that f (n)(0) = 0, then

lim
x→0

f (n)(x)− f (n)(0)

x
= Pn(0) lim

x→0

e
−1

x2

x3n+1
= 0

and therefore f (n+1)(0) = 0 and the induction is completed.

2. Rudin Chapter 8 Exercise 9a

Solution: Let aN = sN − logN . We show that it is a bounded and monotonic sequence and
therefore convergent.

Since logN =
∫ N
1

1
x dx, or the area under the curve f(x) = 1

x from 1 to N . The number sN can be

seen as the sum of areas of rectangles of base 1 and height 1
n , 1 ≤ n ≤ N . In fact, it is U(f, PN ) on

[1, N ], where PN is the partition of N -equally subdivisions. One may see that for the same partition,
L(f, PN ) = sN − 1. Both of these follow from the fact that f is a decreasing function and so the
supremum (infimum) of f occurs at left (right) endpoint.Therefore, logN ≤ sN and logN ≥ sN − 1
and we have

0 ≤ sN − logN ≤ 1.

That is, aN is bounded. For monotonicity, we have, for all N ,

aN+1 − aN =
1

N + 1
−

∫ N+1

N

1

x
dx ≤ 1

N + 1
− 1

N + 1
= 0

since again 1
x is decreasing.



3. Rudin Chapter 8 Exercise 23

Solution: The curve γ(t) in this problem may be written in the polar form

γ(t) = r(t)eiθ(t)

where r(t) > 0 for all t ∈ [a, b] and θ(t) ∈ R. Since γ(a) = γ(b), it follows that r(a) = r(b) and
θ(b) = θ(a) + 2kπ for some k ∈ Z. We will show that Ind(γ) = k.

With γ(t) 6= 0 ∀t, we have

γ′(t)

γ(t)
=
r′(t)

r(t)
− iθ′(t) =

d

dt
(log(r(t))− iθ(t)).

Then, by fundamental theorem of calculus (for complex valued function) and discussion above, we
have

1

2πi

∫ b

a

γ′(t)

γ(t)
dt = θ(b)− θ(a) = k := Ind(γ) ∈ Z.

For [a, b] = [0, 2π], we have θ(t) = t and it is clear that θ(2π)− θ(0) = 2π, or Ind(γ) = 1.

The quantity is called winding number since it counts how many circles around origin (or a loop
containing origin that can be continuously deformed into a circle) the curve γ has travelled during
the time [a, b] with signs (+1 for counterclockwise loop and −1 for clockwise).

4. Rudin Chapter 8 Exercise 24

Solution: Intuitively, if γ does not intersect negative real axis, it can never travel a complete loop
and therefore the winding number has to be 0. Precisely, for c ∈ [0,∞), the closed curve

γc(t) := γ(t) + c

is never zero (otherwise γ(t) = −c is on the negative real axis). Also, since γ′c = γ, we have

Ind(γc) =
1

2πi

∫ b

a

γ(t)

γ(t) + c
dt

which tends to 0 as c → ∞. However, since the expression above is continuous in c (integral of
a continuous function) and integer valued, it must be constant. It then follows that Ind(γ) =
Ind(γc) = 0 for all c ≥ 0.

5. Rudin Chapter 8 Exercise 25

Solution: Following hint, let γ = γ2
γ1

, then

|1− γ(t)| = |γ1(t)− γ2(t)

γ1(t)
| < 1
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since |γ1(t)−γ2(t)| < |γ1(t)| for all t. Therefore, γ(t) never lies on negative real axia and by previous
problem, Ind(γ) = 0.

On the other hand, straightforward computations show that

γ′

γ
=
γ′2
γ2
− γ′1
γ1

and therefore Ind(γ) = Ind(γ2)− Ind(γ1) = 0. The result then follows.

6. Rudin Chapter 8 Exercise 26

Solution: Take trigonometric polynomials P1, P2 as in the hint. By triangle inequality, we have
|γ(t)| − |P1(t)| ≤ |γ(t)− P1(t)| ≤ δ

4 , or |P1(t)| ≥ |γ(t)| − δ
4 ≥

3δ
4 .

Also, we have |P1(t)− P2(t)| ≤ |P1(t)− γ(t)|+ |γ(t)− P2(t)| ≤ δ
4 + δ

4 = δ
2 . The two inequalities we

have so far imply

|P1(t)− P2(t)| < |P1(t)| ∀t

and therefore by Problem 5, Ind(P1) = Ind(P2). We call the common value Ind(γ).

Since both P1 and P2 have norms ≥ 3δ
4 > 0, they will never be 0. Moreover, P1(a) = P1(b) =

P2(a) = P2(b) by Theorem 8.15 (with [a, b] rescaled and translated to [0, 2π]). Problems 4 and 5
apply to P1 and P2. We prove the two problems for γ not necessarily differentiable.

For Problem 4, if γ does not intersect negative real axis, by picking δ small enough, Re(γ(t)) > 2δ > 0
for all t. Therefore, if |γ(t)− P1(t)| < δ, P1 does not intersect negative real axis either and we have
Ind(P1) = 0. Therefore, Ind(γ) = 0.

For Problem 5, suppose γ1 and γ2 satisfy |γ1(t) − γ2(t)| < |γ1(t)|. Take trigonometric polynomials
P1, P2 uniformly converge to γ1 and γ2 respectively. We then have

|1− P2

P1
| ≤ |1− γ2

γ1
|+ |γ2

γ1
− P2

P1
| < 1 + |γ2

γ1
− P2

P1
|.

But since P1, P2 converge uniformly to γ1, γ2, there exist P1, P2 so that |1 − P2(t)
P1(t)
| < 1 for all t.

We may then repeat Problem 5 for P1 and P2 to conclude that Ind(P1) = Ind(P2) and therefore
Ind(γ1) = Ind(γ2)

Page 3


