Homework 11, Advanced Calculus 1

1. Rudin Chapter 8 Exercise 1

Solution: By induction on n, we can readily compute that for each n,

$$
f^{(n)}(x)=\frac{P_{n}(x)}{x^{3 n}} e^{\frac{-1}{x^{2}}},
$$

where P_{n} is a polynomial for all $x \neq 0$ (do it!).
Then we apply induction again to show that $f^{(n)}(0)=0$ for all n, where each step uses the following L'Hospital computation with $k \in \mathbb{N}$:

$$
\lim _{x \rightarrow 0} \frac{e^{\frac{-1}{x^{2}}}}{x^{k}}=\lim _{x \rightarrow 0} \frac{x^{-k}}{e^{\frac{-1}{x^{2}}}}=\frac{k}{2} \lim _{x \rightarrow 0} \frac{x^{-k+2}}{e^{\frac{-1}{x^{2}}}}=\cdots=0
$$

For $n=1$, we have

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0} \frac{e^{\frac{-1}{x^{2}}}}{x}=0
$$

Suppose that $f^{(n)}(0)=0$, then

$$
\lim _{x \rightarrow 0} \frac{f^{(n)}(x)-f^{(n)}(0)}{x}=P_{n}(0) \lim _{x \rightarrow 0} \frac{e^{\frac{-1}{x^{2}}}}{x^{3 n+1}}=0
$$

and therefore $f^{(n+1)}(0)=0$ and the induction is completed.

2. Rudin Chapter 8 Exercise 9a

Solution: Let $a_{N}=s_{N}-\log N$. We show that it is a bounded and monotonic sequence and therefore convergent.
Since $\log N=\int_{1}^{N} \frac{1}{x} d x$, or the area under the curve $f(x)=\frac{1}{x}$ from 1 to N. The number s_{N} can be seen as the sum of areas of rectangles of base 1 and height $\frac{1}{n}, 1 \leq n \leq N$. In fact, it is $U\left(f, P_{N}\right)$ on $[1, N]$, where P_{N} is the partition of N-equally subdivisions. One may see that for the same partition, $L\left(f, P_{N}\right)=s_{N}-1$. Both of these follow from the fact that f is a decreasing function and so the supremum (infimum) of f occurs at left (right) endpoint.Therefore, $\log N \leq s_{N}$ and $\log N \geq s_{N}-1$ and we have

$$
0 \leq s_{N}-\log N \leq 1
$$

That is, a_{N} is bounded. For monotonicity, we have, for all N,

$$
a_{N+1}-a_{N}=\frac{1}{N+1}-\int_{N}^{N+1} \frac{1}{x} d x \leq \frac{1}{N+1}-\frac{1}{N+1}=0
$$

since again $\frac{1}{x}$ is decreasing.

Solution: The curve $\gamma(t)$ in this problem may be written in the polar form

$$
\gamma(t)=r(t) e^{i \theta(t)}
$$

where $r(t)>0$ for all $t \in[a, b]$ and $\theta(t) \in \mathbb{R}$. Since $\gamma(a)=\gamma(b)$, it follows that $r(a)=r(b)$ and $\theta(b)=\theta(a)+2 k \pi$ for some $k \in \mathbb{Z}$. We will show that $\operatorname{Ind}(\gamma)=k$.

With $\gamma(t) \neq 0 \forall t$, we have

$$
\frac{\gamma^{\prime}(t)}{\gamma(t)}=\frac{r^{\prime}(t)}{r(t)}-i \theta^{\prime}(t)=\frac{d}{d t}(\log (r(t))-i \theta(t))
$$

Then, by fundamental theorem of calculus (for complex valued function) and discussion above, we have

$$
\frac{1}{2 \pi i} \int_{a}^{b} \frac{\gamma^{\prime}(t)}{\gamma(t)} d t=\theta(b)-\theta(a)=k:=\operatorname{Ind}(\gamma) \in \mathbb{Z}
$$

For $[a, b]=[0,2 \pi]$, we have $\theta(t)=t$ and it is clear that $\theta(2 \pi)-\theta(0)=2 \pi$, or $\operatorname{Ind}(\gamma)=1$.
The quantity is called winding number since it counts how many circles around origin (or a loop containing origin that can be continuously deformed into a circle) the curve γ has travelled during the time $[a, b]$ with signs (+1 for counterclockwise loop and -1 for clockwise).
4. Rudin Chapter 8 Exercise 24

Solution: Intuitively, if γ does not intersect negative real axis, it can never travel a complete loop and therefore the winding number has to be 0 . Precisely, for $c \in[0, \infty)$, the closed curve

$$
\gamma_{c}(t):=\gamma(t)+c
$$

is never zero (otherwise $\gamma(t)=-c$ is on the negative real axis). Also, since $\gamma_{c}^{\prime}=\gamma$, we have

$$
\operatorname{Ind}\left(\gamma_{c}\right)=\frac{1}{2 \pi i} \int_{a}^{b} \frac{\gamma(t)}{\gamma(t)+c} d t
$$

which tends to 0 as $c \rightarrow \infty$. However, since the expression above is continuous in c (integral of a continuous function) and integer valued, it must be constant. It then follows that $\operatorname{Ind}(\gamma)=$ $\operatorname{Ind}\left(\gamma_{c}\right)=0$ for all $c \geq 0$.
5. Rudin Chapter 8 Exercise 25

Solution: Following hint, let $\gamma=\frac{\gamma_{2}}{\gamma_{1}}$, then

$$
|1-\gamma(t)|=\left|\frac{\gamma_{1}(t)-\gamma_{2}(t)}{\gamma_{1}(t)}\right|<1
$$

since $\left|\gamma_{1}(t)-\gamma_{2}(t)\right|<\left|\gamma_{1}(t)\right|$ for all t. Therefore, $\gamma(t)$ never lies on negative real axia and by previous problem, $\operatorname{Ind}(\gamma)=0$.
On the other hand, straightforward computations show that

$$
\frac{\gamma^{\prime}}{\gamma}=\frac{\gamma_{2}^{\prime}}{\gamma_{2}}-\frac{\gamma_{1}^{\prime}}{\gamma_{1}}
$$

and therefore $\operatorname{Ind}(\gamma)=\operatorname{Ind}\left(\gamma_{2}\right)-\operatorname{Ind}\left(\gamma_{1}\right)=0$. The result then follows.
6. Rudin Chapter 8 Exercise 26

Solution: Take trigonometric polynomials P_{1}, P_{2} as in the hint. By triangle inequality, we have $|\gamma(t)|-\left|P_{1}(t)\right| \leq\left|\gamma(t)-P_{1}(t)\right| \leq \frac{\delta}{4}$, or $\left|P_{1}(t)\right| \geq|\gamma(t)|-\frac{\delta}{4} \geq \frac{3 \delta}{4}$.
Also, we have $\left|P_{1}(t)-P_{2}(t)\right| \leq\left|P_{1}(t)-\gamma(t)\right|+\left|\gamma(t)-P_{2}(t)\right| \leq \frac{\delta}{4}+\frac{\delta}{4}=\frac{\delta}{2}$. The two inequalities we have so far imply

$$
\left|P_{1}(t)-P_{2}(t)\right|<\left|P_{1}(t)\right| \quad \forall t
$$

and therefore by Problem 5, $\operatorname{Ind}\left(P_{1}\right)=\operatorname{Ind}\left(P_{2}\right)$. We call the common value $\operatorname{Ind}(\gamma)$.
Since both P_{1} and P_{2} have norms $\geq \frac{3 \delta}{4}>0$, they will never be 0 . Moreover, $P_{1}(a)=P_{1}(b)=$ $P_{2}(a)=P_{2}(b)$ by Theorem 8.15 (with $[a, b]$ rescaled and translated to $[0,2 \pi]$). Problems 4 and 5 apply to P_{1} and P_{2}. We prove the two problems for γ not necessarily differentiable.
For Problem 4, if γ does not intersect negative real axis, by picking δ small enough, $\operatorname{Re}(\gamma(t))>2 \delta>0$ for all t. Therefore, if $\left|\gamma(t)-P_{1}(t)\right|<\delta, P_{1}$ does not intersect negative real axis either and we have $\operatorname{Ind}\left(P_{1}\right)=0$. Therefore, $\operatorname{Ind}(\gamma)=0$.
For Problem 5, suppose γ_{1} and γ_{2} satisfy $\left|\gamma_{1}(t)-\gamma_{2}(t)\right|<\left|\gamma_{1}(t)\right|$. Take trigonometric polynomials P_{1}, P_{2} uniformly converge to γ_{1} and γ_{2} respectively. We then have

$$
\left|1-\frac{P_{2}}{P_{1}}\right| \leq\left|1-\frac{\gamma_{2}}{\gamma_{1}}\right|+\left|\frac{\gamma_{2}}{\gamma_{1}}-\frac{P_{2}}{P_{1}}\right|<1+\left|\frac{\gamma_{2}}{\gamma_{1}}-\frac{P_{2}}{P_{1}}\right| .
$$

But since P_{1}, P_{2} converge uniformly to γ_{1}, γ_{2}, there exist P_{1}, P_{2} so that $\left|1-\frac{P_{2}(t)}{P_{1}(t)}\right|<1$ for all t. We may then repeat Problem 5 for P_{1} and P_{2} to conclude that $\operatorname{Ind}\left(P_{1}\right)=\operatorname{Ind}\left(P_{2}\right)$ and therefore $\operatorname{Ind}\left(\gamma_{1}\right)=\operatorname{Ind}\left(\gamma_{2}\right)$

