Name and Student ID's: \qquad

Homework 12, Advanced Calculus 1

1. Determine the Fourier series of the following functions on $[-\pi, \pi]$, in the form $\sum_{n \in \mathbb{Z}} c_{n} e^{i n x}$:
(a) $f(x)=2+7 \cos (3 x)-4 \sin (2 x$. $)$
(b) $f(x)=x$.
(c) $f(x)=(\pi-x)(\pi+x)$.
2. Continue from Problem 1,
(a) e^{x}.
(b) $e^{|x|}$.
3. Let f be an even function of period 2π with $f(x)=\cos (2 x)$ for $x \in\left[0, \frac{\pi}{2}\right]$ and $f(x)=-1$ for $x \in\left(\frac{\pi}{2}, \pi\right)$.
(a) Complete the definition of f on its domain $[-\pi, \pi]$.
(b) Find its Fourier series.
(c) Compute the sum

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k+1)(2 k-1)(2 k+3)}
$$

4. Find the Fourier series, in the form $a_{0}+\sum a_{n} \cos (n x)+b_{n} \sin (n x)$, of the function

$$
f(x)=(\pi-|x|)^{2}
$$

on $[-\pi, \pi]$.
Use your result to prove the identity

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}, \quad \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}
$$

(Hint: Check that $f(x)$ is an even function. What can you say about $f(x) \cos (n x)$ and $f(x) \sin (n x)$ and their integrals on $[-\pi, \pi]$?)
5. Given $f \sim \sum_{n} c_{n} e^{i n x}, f$ differentiable and 2π-periodic, prove that $f^{\prime} \sim \sum_{n} i n c_{n} e^{i n x}$.
6. Continue from Problem 5, suppose that both f and f^{\prime} are equal to their Fourier series. Solve the differential equation

$$
f^{\prime}(x)+2 f(x-\pi)=\sin x
$$

7. Continue from Problem 5 and 6 , suppose in addition that $f \in C^{2}$. Find all possible values of $a \in \mathbb{R}$ so that

$$
f^{\prime \prime}(x)+a f(x)=f(x+\pi)
$$

for all $x \in \mathbb{R}$ and $f \neq 0$.
8. Rudin Chapter 8 Exercise 13
9. Rudin Chapter 8 Exercise 15
10. Rudin Chapter 8 Exercise 16
11. Rudin Chapter 8 Exercise 19
12. Rudin Chapter 8 Exercise 27

