Name and Student ID’s:

Homework 1, Advanced Calculus 1

1. Prove Proposition 1.15 of Rudin (page 7).

Solution: Since x # 0, 1/x exists and we may multiply it to the equations in part (a) and (b). Using
associativity of multiplication (M2), the results follow. For part (c), we simply note that zy =1 =
x(1/z), and by part (b), y = 1/z. Part (d) follows from the equation 1 = (1/2)(1/(1/z)) = (1/x)x
and part (a).

2. In class we have defined the rational number QQ as the set of equivalence classes:

Q:=(Z xZ\{0})/ ~,
where (a,b) ~ (¢,d) < ad = be. Define field operations on Q by

e [(a,b)] + [(¢,d)] = [(ad + bc, bd)].

¢ [(a,0)] - [(¢,d)] = [(ac, bd)).
(a) Show that the operations above are well defined. That is, different choices of representative from
the classes give the same equivalence classes on the right hand side.

(b) Prove that Q with these operations is a field. You do not need to show associativity and commu-
tativity in both operations.

Solution:

(a) Take equivalent pairs (a,b) ~ (a/,0') and (¢,d) ~ (¢/,d’') in Z x Z\{0}. By definition we have
ab’ = a'b and c¢d’ = ¢/d. We then have (ad+bc)(V/'d’) = adb'd +beb'd’ = a’bdd' +bc'd'd = (a'd’ +
b'c')bd. Therefore (ad+be,bd) ~ (a’d'+b'¢',b'd’) and therefore [(ad+be, bd)] = [(a’d' +V' ¢, b'd")]
so addition is independent of choice of representatives and well defined. The well-definedness
for multiplication is similar.

(b) The operations above immediately imply that (Q, 4+, -) is a field with 0 = [(0,1)] and 1 = [(1, 1)].
The additive inverse of every [(a, b)] is given by [(—a, b)] and the multiplicative inverse of [(a, b)]
with a # 0 is simply [(b,a)]. It is elementary to check all field axioms.

3. Rudin Exercise 6 ab.

Solution:

(a) By Theorem 1.21, the equality we want to prove is equivalent to
b = (") )" (1)

But by Corollary after Theorem 1.21, (7)Y = (b!/9)?, and ((b?)'/9)™ = (b'/9)P". But from
m/n = p/q, we have pn = gm. The right hand side of (1) is then ((?)%/9)™ = (b/9)9™ wwhich
is just b™.




(b)

Let r = m/n and s = p/q, we have

m n
r+s= maTnp + p,
nq
and so
br-&-s — (bmq+np)7%q
RGO COk

Thm£00r. b% b%

= b"b%.

4. Rudin Exercise 6 cd.

(a)

Solution:

For all z € R, the set

B(x) = {b" |t < x,t € Q}

is clearly nonempty. We check that it is bounded above (and therefore sup exists and hence
the definition b* is a valid statement. It is natural to expect that B(z) is bounded above by b°,
where s is any rational number greater than x, and therefore greater than all rational numbers
< z. For this we must check that the quantity " is monotonic in r for r € Q.

Take r,s € Q with r < s. We have from 6b that b* —b" = b"(b°"" — 1) with s —7 = = > 0.
By 6a, we may assume that m,n > 0. We have that (b°~")™ =" > 1 since b > 1 and n > 0.
Therefore b*~" > 1 (otherwise its mth power would be > 1.) It then follows that b* —b" > 0
and we are done.

We must also check that the definition of b* coincides with the one given in 6a when x € Q. But
it follows easily from the monotonicity argument. If z € Q, b* € B(x) and b* > b' V rational
t <. So B(z) contains an upper bound of itself and therefore must be the least upper bound
(anything smaller than b® is not an upper bound of B(x) since it is smaller than b* € B(z).)

We first show that b*b¥ is an upper bound of the set B(z + y). Take b* € B(z + y), where ¢
is rational and < z + y. Since Q is dense in R, there exists rational number ¢; € [t — y, x].
Therefore t; < x and t — ¢; < y. Take another rational number t5 € [t — t1,y]. We then have
to <y andt <t +ty < x4+ y. By monotonicity proved in 6¢ and power rule 6d, we have

bt S bt1+t2 _ btlth.

But by our choices of t; and to, we know that b"* € B(z) and b*2> € B(y), and therefore are no
greater than the corresponding supremums b* and Y, respectively.

To show that b*bY is the least upper bound, we pick any € > 0. It is possible to pick €;,€e2 >0
so that

by — e < (b% —€1)(bY — €2)
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since the term €1bY + €2b0™ — €1e5 — 0 as €1,ea — 0. Then, by definition of supremum, there
exists rational numbers t1,t; no greater than z,y, respectively, so that (b — €;) < b'* and
(bY — €3) < b'2. Therefore, b°bY — e < bh1bt2 = pliti2 € B(x +y).

5. Rudin Exercise 7 abcd.

Solution:

(a) The estimate follows simply from

V' —1=b-1)0" 0" 1) >n(b—1)
since b > 1 and each of the n terms in the last parenthesis is no less than 1.
(b) Since b > 1, its n'" root bw > 1 and we simply replace b by b= in part (a).
(c) The result follows simply by rearranging the inequality in part (b) and replace 1 by t.

(d) Since y > b*, we have t = yb~* > 1. By Archimedean property there exists n € N that is
greater than —2=1—. For such n and ¢, part (c) implies that b < t = yb~™" and therefore
yb 1
y > bwta,

6. Rudin Exercise 7efg.

Solution:

(a) Since y < b, we have t = b*y~1 > 1. Like in 6d, we pick n € N greater than y_ll’b;,,il to arrive
at the conclusion bw < y b, or y < b

(b) Given A = {w € R| b < y}. The set is nonempty since there exists some n € Z so that b < y"
and therefore bw < y or % € A. It is clearly bounded above since there exists n € N so that

b™ >y (recall b > 1) and therefore all w € A must be no greater than n. Therefore x = sup A
exist.

The next two problems deal with the decimal expansion of real numbers.

7. Given a real number x > 0,
(a) prove that there is a largest integer ng < x. (Use Archimedean property)

(b) Inductively, for each k € N, let ny be the largest integer so that

ng < 10F (x —ng—n107t — .. — nk,llo—%—l)) 7
or equivalently
k
Ay = anlo—J < z.
3=0

Show that 0 <n; <9 for all j > 1.
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(¢c) Prove that the sequence E = {A;} is monotonic and bounded above, and therefore limy Ay, exists
and is equal to sup F.

(a)

(b)

Solution:

By Archimedean property, the set {n | n > x} C N is nonempty and therefore has a minimum
element nj. Then ng :=n{ — 1 is the desired integer.

E is certainly bounded above element is no greater than z. Moreover, Ay — Ax_1 = ni107% >0
and therefore the sequence is monotonic and the limit is precisely the supremum.

8. (a) Prove that z =sup E.

(b) Eliminating sequences {n;} mentioned above with the property that n; =9 for all j after a certain
term (which is impossible from its construction anyway), prove that

D 11077 =Y m1070 =y =m; Vi
j=0 j=0

(a)

Solution:

We show that x = limg Ax. Indeed, the constructions of ny imply that

0 < (x— Ap)10F —ny < 1,
since ny, is the largest integer < (z — A)10%. Or

1+ng 1

T
since ng < 9. Letting kK — oo, the result follows.

Suppose the contrary, and let N be the first digit where ny # my, or without loss of generality,
ny > my. Since the infinite series converge, we may subtract term-by-term

0= (nN — mN)lo_N + Z (nj — mj)lo_j.
j=N+1

Since we eliminate decimals with repeated 9’s, the absolute value of the second term is estimated
by

Y (=m0 < Y 9-107 =107"
j=N+1 j=N+1

and the first term is at least 107", Therefore, their sum is strictly greater than 0, a contradic-
tion.

We have shown that every positive real number may be uniquely expressed by an infinite sequence of
integers {n;} with 0 <n; <9 Vj > 1 so that
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(oo}
T = Z n;1077.
j=0
We usually denote it by

T = Ng.ninang:--- ,
and call it the decimal expansion of x. Note that we may replace 10 by any other positive integer

N > 1 and the entire construction holds without any major modification (you may be familiar with the
expansion with N = 2).
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