Name and Student ID's:

Homework 1, Advanced Calculus 1

1. Prove Proposition 1.15 of Rudin (page 7).

Solution: Since $x \neq 0,1 / x$ exists and we may multiply it to the equations in part (a) and (b). Using associativity of multiplication (M2), the results follow. For part (c), we simply note that $x y=1=$ $x(1 / x)$, and by part (b), $y=1 / x$. Part (d) follows from the equation $1=(1 / x)(1 /(1 / x))=(1 / x) x$ and part (a).
2. In class we have defined the rational number \mathbb{Q} as the set of equivalence classes:

$$
\mathbb{Q}:=(\mathbb{Z} \times \mathbb{Z} \backslash\{0\}) / \sim,
$$

where $(a, b) \sim(c, d) \Leftrightarrow a d=b c$. Define field operations on \mathbb{Q} by

- $[(a, b)]+[(c, d)]=[(a d+b c, b d)]$.
- $[(a, b)] \cdot[(c, d)]=[(a c, b d)]$.
(a) Show that the operations above are well defined. That is, different choices of representative from the classes give the same equivalence classes on the right hand side.
(b) Prove that \mathbb{Q} with these operations is a field. You do not need to show associativity and commutativity in both operations.

Solution:

(a) Take equivalent pairs $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$ in $\mathbb{Z} \times \mathbb{Z} \backslash\{0\}$. By definition we have $a b^{\prime}=a^{\prime} b$ and $c d^{\prime}=c^{\prime} d$. We then have $(a d+b c)\left(b^{\prime} d^{\prime}\right)=a d b^{\prime} d^{\prime}+b c b^{\prime} d^{\prime}=a^{\prime} b d d^{\prime}+b c^{\prime} c^{\prime} d=\left(a^{\prime} d^{\prime}+\right.$ $\left.b^{\prime} c^{\prime}\right) b d$. Therefore $(a d+b c, b d) \sim\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)$ and therefore $[(a d+b c, b d)]=\left[\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)\right]$ so addition is independent of choice of representatives and well defined. The well-definedness for multiplication is similar.
(b) The operations above immediately imply that $(\mathbb{Q},+, \cdot)$ is a field with $0=[(0,1)]$ and $1=[(1,1)]$. The additive inverse of every $[(a, b)]$ is given by $[(-a, b)]$ and the multiplicative inverse of $[(a, b)]$ with $a \neq 0$ is simply $[(b, a)]$. It is elementary to check all field axioms.
3. Rudin Exercise 6 ab .

Solution:

(a) By Theorem 1.21, the equality we want to prove is equivalent to

$$
\begin{equation*}
b^{m}=\left(\left(b^{p}\right)^{1 / q}\right)^{n} \tag{1}
\end{equation*}
$$

But by Corollary after Theorem 1.21, $\left(b^{p}\right)^{1 / q}=\left(b^{1 / q}\right)^{p}$, and $\left(\left(b^{p}\right)^{1 / q}\right)^{n}=\left(b^{1 / q}\right)^{p n}$. But from $m / n=p / q$, we have $p n=q m$. The right hand side of (1) is then $\left(\left(b^{p}\right)^{1 / q}\right)^{n}=\left(b^{1 / q}\right)^{q m}$, which is just b^{m}.
(b) Let $r=m / n$ and $s=p / q$, we have

$$
r+s=\frac{m q+n p}{n q}
$$

and so

$$
\begin{array}{ccl}
b^{r+s} & = & \left(b^{m q+n p}\right)^{\frac{1}{n q}} \\
& \stackrel{\text { Cor. }}{=} & \left(b^{m q}\right)^{\frac{1}{n q}}\left(b^{n p}\right)^{\frac{1}{n q}} \\
& \stackrel{\text { Thm..Cor. }}{=} & b^{\frac{m}{n}} b^{\frac{p}{q}} \\
= & b^{r} b^{s} .
\end{array}
$$

4. Rudin Exercise 6 cd.

Solution:

(a) For all $x \in \mathbb{R}$, the set

$$
B(x):=\left\{b^{t} \mid t \leq x, t \in \mathbb{Q}\right\}
$$

is clearly nonempty. We check that it is bounded above (and therefore sup exists and hence the definition b^{x} is a valid statement. It is natural to expect that $B(x)$ is bounded above by b^{s}, where s is any rational number greater than x, and therefore greater than all rational numbers $\leq x$. For this we must check that the quantity b^{r} is monotonic in r for $r \in \mathbb{Q}$.
Take $r, s \in \mathbb{Q}$ with $r<s$. We have from 6 b that $b^{s}-b^{r}=b^{r}\left(b^{s-r}-1\right)$ with $s-r=\frac{n}{m}>0$. By 6a, we may assume that $m, n>0$. We have that $\left(b^{s-r}\right)^{m}=b^{n}>1$ since $b>1$ and $n>0$. Therefore $b^{s-r}>1$ (otherwise its m th power would be ≥ 1.) It then follows that $b^{s}-b^{r}>0$ and we are done.
We must also check that the definition of b^{x} coincides with the one given in 6 a when $x \in \mathbb{Q}$. But it follows easily from the monotonicity argument. If $x \in \mathbb{Q}, b^{x} \in B(x)$ and $b^{x} \geq b^{t} \forall$ rational $t \leq x$. So $B(x)$ contains an upper bound of itself and therefore must be the least upper bound (anything smaller than b^{x} is not an upper bound of $B(x)$ since it is smaller than $b^{x} \in B(x)$.)
(b) We first show that $b^{x} b^{y}$ is an upper bound of the set $B(x+y)$. Take $b^{t} \in B(x+y)$, where t is rational and $\leq x+y$. Since \mathbb{Q} is dense in \mathbb{R}, there exists rational number $t_{1} \in[t-y, x]$. Therefore $t_{1} \leq x$ and $t-t_{1} \leq y$. Take another rational number $t_{2} \in\left[t-t_{1}, y\right]$. We then have $t_{2} \leq y$ and $t \leq t_{1}+t_{2} \leq x+y$. By monotonicity proved in 6 c and power rule 6 d , we have

$$
b^{t} \leq b^{t_{1}+t_{2}}=b^{t_{1}} b^{t_{2}}
$$

But by our choices of t_{1} and t_{2}, we know that $b^{t_{1}} \in B(x)$ and $b^{t_{2}} \in B(y)$, and therefore are no greater than the corresponding supremums b^{x} and b^{y}, respectively.
To show that $b^{x} b^{y}$ is the least upper bound, we pick any $\epsilon>0$. It is possible to pick $\epsilon_{1}, \epsilon_{2}>0$ so that

$$
b^{x} b^{y}-\epsilon \leq\left(b^{x}-\epsilon_{1}\right)\left(b^{y}-\epsilon_{2}\right)
$$

since the term $\epsilon_{1} b^{y}+\epsilon_{2} b^{x}-\epsilon_{1} \epsilon_{2} \rightarrow 0$ as $\epsilon_{1}, \epsilon_{2} \rightarrow 0$. Then, by definition of supremum, there exists rational numbers t_{1}, t_{2} no greater than x, y, respectively, so that $\left(b^{x}-\epsilon_{1}\right) \leq b^{t_{1}}$ and $\left(b^{y}-\epsilon_{2}\right) \leq b^{t_{2}}$. Therefore, $b^{x} b^{y}-\epsilon \leq b^{t_{1}} b^{t_{2}}=b^{t_{1}+t_{2}} \in B(x+y)$.
5. Rudin Exercise 7 abcd.

Solution:

(a) The estimate follows simply from

$$
b^{n}-1=(b-1)\left(b^{n-1}+b^{n-2}+\cdots+1\right) \geq n(b-1)
$$

since $b \geq 1$ and each of the n terms in the last parenthesis is no less than 1 .
(b) Since $b>1$, its $n^{\text {th }}$ root $b^{\frac{1}{n}}>1$ and we simply replace b by $b^{\frac{1}{n}}$ in part (a).
(c) The result follows simply by rearranging the inequality in part (b) and replace 1 by t.
(d) Since $y>b^{w}$, we have $t=y b^{-w}>1$. By Archimedean property there exists $n \in \mathbb{N}$ that is greater than $\frac{b-1}{y b^{-w}-1}$. For such n and t, part (c) implies that $b^{\frac{1}{n}}<t=y b^{-w}$ and therefore $y>b^{w+\frac{1}{n}}$.
6. Rudin Exercise 7 efg.

Solution:

(a) Since $y<b^{w}$, we have $t=b^{w} y^{-1}>1$. Like in 6 d , we pick $n \in \mathbb{N}$ greater than $\frac{b-1}{y^{-1} b^{w}-1}$ to arrive at the conclusion $b^{\frac{1}{n}}<y^{-1} b^{w}$, or $y<b^{w-\frac{1}{n}}$.
(b) Given $A=\left\{w \in \mathbb{R} \mid b^{w}<y\right\}$. The set is nonempty since there exists some $n \in \mathbb{Z}$ so that $b<y^{n}$ and therefore $b^{\frac{1}{n}}<y$ or $\frac{1}{n} \in A$. It is clearly bounded above since there exists $n \in \mathbb{N}$ so that $b^{n}>y($ recall $b>1)$ and therefore all $w \in A$ must be no greater than n. Therefore $x=\sup A$ exist.

The next two problems deal with the decimal expansion of real numbers.
7. Given a real number $x>0$,
(a) prove that there is a largest integer $n_{0} \leq x$. (Use Archimedean property)
(b) Inductively, for each $k \in \mathbb{N}$, let n_{k} be the largest integer so that

$$
n_{k} \leq 10^{k}\left(x-n_{0}-n_{1} 10^{-1}-\cdots-n_{k-1} 10^{-(k-1)}\right)
$$

or equivalently

$$
A_{k}=\sum_{j=0}^{k} n_{j} 10^{-j} \leq x
$$

Show that $0 \leq n_{j} \leq 9$ for all $j>1$.
(c) Prove that the sequence $E=\left\{A_{k}\right\}$ is monotonic and bounded above, and therefore $\lim _{k} A_{k}$ exists and is equal to $\sup E$.

Solution:

(a) By Archimedean property, the set $\{n \mid n>x\} \subset \mathbb{N}$ is nonempty and therefore has a minimum element n_{0}^{\prime}. Then $n_{0}:=n_{0}^{\prime}-1$ is the desired integer.
(b) E is certainly bounded above element is no greater than x. Moreover, $A_{k}-A_{k-1}=n_{k} 10^{-k} \geq 0$ and therefore the sequence is monotonic and the limit is precisely the supremum.
8. (a) Prove that $x=\sup E$.
(b) Eliminating sequences $\left\{n_{j}\right\}$ mentioned above with the property that $n_{j}=9$ for all j after a certain term (which is impossible from its construction anyway), prove that

$$
\sum_{j=0}^{\infty} n_{j} 10^{-j}=\sum_{j=0}^{\infty} m_{j} 10^{-j} \Rightarrow n_{j}=m_{j} \forall j
$$

Solution:

(a) We show that $x=\lim _{k} A_{k}$. Indeed, the constructions of n_{k} imply that

$$
0 \leq\left(x-A_{k}\right) 10^{k}-n_{k} \leq 1
$$

since n_{k} is the largest integer $\leq\left(x-A_{k}\right) 10^{k}$. Or

$$
0 \leq x-A_{k} \leq \frac{1+n_{k}}{10^{k}} \leq \frac{1}{10^{k-1}}
$$

since $n_{k} \leq 9$. Letting $k \rightarrow \infty$, the result follows.
(b) Suppose the contrary, and let N be the first digit where $n_{N} \neq m_{N}$, or without loss of generality, $n_{N}>m_{N}$. Since the infinite series converge, we may subtract term-by-term

$$
0=\left(n_{N}-m_{N}\right) 10^{-N}+\sum_{j=N+1}^{\infty}\left(n_{j}-m_{j}\right) 10^{-j}
$$

Since we eliminate decimals with repeated 9's, the absolute value of the second term is estimated by

$$
\left|\sum_{j=N+1}^{\infty}\left(n_{j}-m_{j}\right) 10^{-j}\right|<\sum_{j=N+1}^{\infty} 9 \cdot 10^{-j}=10^{-N}
$$

and the first term is at least 10^{-N}. Therefore, their sum is strictly greater than 0 , a contradiction.

We have shown that every positive real number may be uniquely expressed by an infinite sequence of integers $\left\{n_{j}\right\}$ with $0 \leq n_{j} \leq 9 \forall j>1$ so that

$$
x=\sum_{j=0}^{\infty} n_{j} 10^{-j}
$$

We usually denote it by

$$
x=n_{0} . n_{1} n_{2} n_{3} \cdots,
$$

and call it the decimal expansion of x. Note that we may replace 10 by any other positive integer $N>1$ and the entire construction holds without any major modification (you may be familiar with the expansion with $N=2$).

