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Homework 1, Advanced Calculus 1

1. Prove Proposition 1.15 of Rudin (page 7).

Solution: Since x 6= 0, 1/x exists and we may multiply it to the equations in part (a) and (b). Using
associativity of multiplication (M2), the results follow. For part (c), we simply note that xy = 1 =
x(1/x), and by part (b), y = 1/x. Part (d) follows from the equation 1 = (1/x)(1/(1/x)) = (1/x)x
and part (a).

2. In class we have defined the rational number Q as the set of equivalence classes:

Q := (Z× Z\{0})/ ∼,

where (a, b) ∼ (c, d)⇔ ad = bc. Define field operations on Q by

• [(a, b)] + [(c, d)] = [(ad+ bc, bd)].

• [(a, b)] · [(c, d)] = [(ac, bd)].

(a) Show that the operations above are well defined. That is, different choices of representative from
the classes give the same equivalence classes on the right hand side.

(b) Prove that Q with these operations is a field. You do not need to show associativity and commu-
tativity in both operations.

Solution:

(a) Take equivalent pairs (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′) in Z × Z\{0}. By definition we have
ab′ = a′b and cd′ = c′d. We then have (ad+bc)(b′d′) = adb′d′+bcb′d′ = a′bdd′+bc′c′d = (a′d′+
b′c′)bd. Therefore (ad+bc, bd) ∼ (a′d′+b′c′, b′d′) and therefore [(ad+bc, bd)] = [(a′d′+b′c′, b′d′)]
so addition is independent of choice of representatives and well defined. The well-definedness
for multiplication is similar.

(b) The operations above immediately imply that (Q,+, ·) is a field with 0 = [(0, 1)] and 1 = [(1, 1)].
The additive inverse of every [(a, b)] is given by [(−a, b)] and the multiplicative inverse of [(a, b)]
with a 6= 0 is simply [(b, a)]. It is elementary to check all field axioms.

3. Rudin Exercise 6 ab.

Solution:

(a) By Theorem 1.21, the equality we want to prove is equivalent to

bm = ((bp)1/q)n. (1)

But by Corollary after Theorem 1.21, (bp)1/q = (b1/q)p, and ((bp)1/q)n = (b1/q)pn. But from
m/n = p/q, we have pn = qm. The right hand side of (1) is then ((bp)1/q)n = (b1/q)qm, which
is just bm.



(b) Let r = m/n and s = p/q, we have

r + s =
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nq
,
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4. Rudin Exercise 6 cd.

Solution:

(a) For all x ∈ R, the set

B(x) := {bt | t ≤ x, t ∈ Q}

is clearly nonempty. We check that it is bounded above (and therefore sup exists and hence
the definition bx is a valid statement. It is natural to expect that B(x) is bounded above by bs,
where s is any rational number greater than x, and therefore greater than all rational numbers
≤ x. For this we must check that the quantity br is monotonic in r for r ∈ Q.

Take r, s ∈ Q with r < s. We have from 6b that bs − br = br(bs−r − 1) with s − r = n
m > 0.

By 6a, we may assume that m,n > 0. We have that (bs−r)m = bn > 1 since b > 1 and n > 0.
Therefore bs−r > 1 (otherwise its mth power would be ≥ 1.) It then follows that bs − br > 0
and we are done.

We must also check that the definition of bx coincides with the one given in 6a when x ∈ Q. But
it follows easily from the monotonicity argument. If x ∈ Q, bx ∈ B(x) and bx ≥ bt ∀ rational
t ≤ x. So B(x) contains an upper bound of itself and therefore must be the least upper bound
(anything smaller than bx is not an upper bound of B(x) since it is smaller than bx ∈ B(x).)

(b) We first show that bxby is an upper bound of the set B(x + y). Take bt ∈ B(x + y), where t
is rational and ≤ x + y. Since Q is dense in R, there exists rational number t1 ∈ [t − y, x].
Therefore t1 ≤ x and t − t1 ≤ y. Take another rational number t2 ∈ [t − t1, y]. We then have
t2 ≤ y and t ≤ t1 + t2 ≤ x+ y. By monotonicity proved in 6c and power rule 6d, we have

bt ≤ bt1+t2 = bt1bt2 .

But by our choices of t1 and t2, we know that bt1 ∈ B(x) and bt2 ∈ B(y), and therefore are no
greater than the corresponding supremums bx and by, respectively.

To show that bxby is the least upper bound, we pick any ε > 0. It is possible to pick ε1, ε2 > 0
so that

bxby − ε ≤ (bx − ε1)(by − ε2)
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since the term ε1b
y + ε2b

x − ε1ε2 → 0 as ε1, ε2 → 0. Then, by definition of supremum, there
exists rational numbers t1, t2 no greater than x, y, respectively, so that (bx − ε1) ≤ bt1 and
(by − ε2) ≤ bt2 . Therefore, bxby − ε ≤ bt1bt2 = bt1+t2 ∈ B(x+ y).

5. Rudin Exercise 7 abcd.

Solution:

(a) The estimate follows simply from

bn − 1 = (b− 1)(bn−1 + bn−2 + · · ·+ 1) ≥ n(b− 1)

since b ≥ 1 and each of the n terms in the last parenthesis is no less than 1.

(b) Since b > 1, its nth root b
1
n > 1 and we simply replace b by b

1
n in part (a).

(c) The result follows simply by rearranging the inequality in part (b) and replace 1 by t.

(d) Since y > bw, we have t = yb−w > 1. By Archimedean property there exists n ∈ N that is

greater than b−1
yb−w−1 . For such n and t, part (c) implies that b

1
n < t = yb−w and therefore

y > bw+ 1
n .

6. Rudin Exercise 7efg.

Solution:

(a) Since y < bw, we have t = bwy−1 > 1. Like in 6d, we pick n ∈ N greater than b−1
y−1bw−1 to arrive

at the conclusion b
1
n < y−1bw, or y < bw−

1
n .

(b) Given A = {w ∈ R | bw < y}. The set is nonempty since there exists some n ∈ Z so that b < yn

and therefore b
1
n < y or 1

n ∈ A. It is clearly bounded above since there exists n ∈ N so that
bn > y (recall b > 1) and therefore all w ∈ A must be no greater than n. Therefore x = supA
exist.

The next two problems deal with the decimal expansion of real numbers.

7. Given a real number x > 0,

(a) prove that there is a largest integer n0 ≤ x. (Use Archimedean property)

(b) Inductively, for each k ∈ N, let nk be the largest integer so that

nk ≤ 10k
(
x− n0 − n110−1 − · · · − nk−110−(k−1)

)
,

or equivalently

Ak =

k∑
j=0

nj10−j ≤ x.

Show that 0 ≤ nj ≤ 9 for all j > 1.
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(c) Prove that the sequence E = {Ak} is monotonic and bounded above, and therefore limk Ak exists
and is equal to supE.

Solution:

(a) By Archimedean property, the set {n | n > x} ⊂ N is nonempty and therefore has a minimum
element n′0. Then n0 := n′0 − 1 is the desired integer.

(b) E is certainly bounded above element is no greater than x. Moreover, Ak−Ak−1 = nk10−k ≥ 0
and therefore the sequence is monotonic and the limit is precisely the supremum.

8. (a) Prove that x = supE.

(b) Eliminating sequences {nj} mentioned above with the property that nj = 9 for all j after a certain
term (which is impossible from its construction anyway), prove that

∞∑
j=0

nj10−j =

∞∑
j=0

mj10−j ⇒ nj = mj ∀j.

Solution:

(a) We show that x = limk Ak. Indeed, the constructions of nk imply that

0 ≤ (x−Ak)10k − nk ≤ 1,

since nk is the largest integer ≤ (x−Ak)10k. Or

0 ≤ x−Ak ≤
1 + nk

10k
≤ 1

10k−1

since nk ≤ 9. Letting k →∞, the result follows.

(b) Suppose the contrary, and let N be the first digit where nN 6= mN , or without loss of generality,
nN > mN . Since the infinite series converge, we may subtract term-by-term

0 = (nN −mN )10−N +

∞∑
j=N+1

(nj −mj)10−j .

Since we eliminate decimals with repeated 9’s, the absolute value of the second term is estimated
by

|
∞∑

j=N+1

(nj −mj)10−j | <
∞∑

j=N+1

9 · 10−j = 10−N

and the first term is at least 10−N . Therefore, their sum is strictly greater than 0, a contradic-
tion.

We have shown that every positive real number may be uniquely expressed by an infinite sequence of
integers {nj} with 0 ≤ nj ≤ 9 ∀j > 1 so that
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x =

∞∑
j=0

nj10−j .

We usually denote it by

x = n0.n1n2n3 · · · ,

and call it the decimal expansion of x. Note that we may replace 10 by any other positive integer
N > 1 and the entire construction holds without any major modification (you may be familiar with the
expansion with N = 2).
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