Name and Student ID's: _____

Homework 3, Advanced Calculus 1

For the first two problems, we consider the space for a real number $p \ge 1$:

$$H^p := \{ f : \mathbb{R} \to \mathbb{R} \text{ continuous } | \int_{\mathbb{R}} |f|^p dx < \infty \}.$$

- 1. Prove that H^p is closed under usual addition and scalar multiplication of functions. That is, for every $f, g \in H^p$ and $a \in \mathbb{R}$, we have $af, f + g \in H^p$.
- 2. On H^p , we define $d: H^p \times H^p \to \mathbb{R}$ by

$$d(f,g) := \left(\int_{\mathbb{R}} |f-g|^p\right)^{\frac{1}{p}}.$$

Prove that d satisfies the triangle inequality

$$d(f,g) \le d(f,h) + d(h,g)$$

and therefore is a metric on H^p . (The other requirements are quite easy to check.) (Hint: For this problem, it is helpful to use the *Hölder inequality*:

For all
$$p, q \in [1, \infty]$$
 so that $\frac{1}{p} + \frac{1}{q} = 1$, we have
$$\int_{\mathbb{R}} |fg| dx \le \left(\int_{\mathbb{R}} |f|^p\right)^{\frac{1}{p}} \left(\int_{\mathbb{R}} |g|^q\right)^{\frac{1}{q}}.$$

Start by usual triangle inequality $|F + G|^p \leq (|F| + |G|)|F + G|^{p-1}$.

- 3. Prove that for any metric space (X, d), finite sets are closed.
- 4. Prove that \mathbb{R}^n with *discrete metric*, i.e. the one given in Exercise 10 in Rudin, is a bounded set.

Two metrics d_1 and d_2 on a set X are said to be equivalent if there exist constants $C_1, C_2 > 0$ so that

$$C_1 d_2(x, y) \le d_1(x, y) \le C_2 d_2(x, y)$$

for all $x, y \in X$.

It is straightforward to show that the relation described above is an equivalence relation. (Problem 9)

- 5. If two metrics d_1 and d_2 are equivalent on X, prove that they induce the same topology. That is, a subset $E \subset X$ is open with respect to d_1 if and only if E is open with respect to d_2 . Prove the same statement with "open" replaced by "closed"
- 6. Prove that on \mathbb{R} , the discrete metric (the one in Exercise 10 of Rudin) is *not* equivalent to the Euclidean metric $d_{EC}(x, y) = |x y|$.
- 7. Prove that on \mathbb{R}^n , d_{EC} is equivalent to the *infinity metric*:

$$d_{\infty}(\mathbf{x}, \mathbf{y}) := max_{1 \le j \le n} \{ |x_j - y_j| \}.$$

- 8. Prove that the metric d_5 in Exercise 11 of Rudin is *not* equivalent to d_{∞} .
- 9. Show that two metrics being equivalent is an equivalence relation.