Name and Student ID's: _

Homework 5, Advanced Calculus 1

- 1. Rudin Chapter 2 Exercise 18.
- 2. Rudin Chapter 2 Exercise 19cd.
- 3. Rudin Chapter 2 Exercise 20.
- 4. Rudin Chapter 2 Exercise 27.
- 5. Rudin Chapter 2 Exercise 28.

Solution: Let *E* be a closed subset of a separable metric space *X*. Let *P* be the set of condensation points of *E*, which is perfect by Exercise 27. It suffices to show that $P \subset E$, since then $P = E \cup (P \cap E^c)$ and the second set in the union is at most countable by Exercise 27.

By definition, condensation points are clearly limit point (uncountable set is clearly infinite), and therefore $P \subset E'$. But since E is closed, we have E = E' and the proof is done.

6. Rudin Chapter 2 Exercise 29.

Solution: Note the the collection of open intervals

$$\mathcal{I} := \{ (q - r, q + r) \mid q, r \in \mathbb{Q} \}$$

is a countable base for \mathbb{R} . (why?) Every open subset is therefore a union of some collection of intervals $\{I'_i\} \subset \mathcal{I}$. Since \mathcal{I} is countable, there are at most countably many I_i :

$$E = \bigcup_{i=1}^{\infty} I'_i.$$

Partition \mathbb{N} into a disjoint union of at most countably many subsets $\mathbb{N} = \bigcup_{\alpha} N_{\alpha}$, where $i, j \in N_{\alpha}$ for some α if $I'_i \cap I'_j \neq \phi$. Define

$$I_{\alpha} := \bigcup_{i \in N_{\alpha}} I'_i.$$

We may check that

- Each $I_{\alpha} = (a_{\alpha}, b_{\alpha})$, where a_{α} (resp. b_{α}) is the infimum (resp. supremum) of the left (right) endpoints of open intervals in $\{I'_i \mid i \in N_{\alpha}\}$.
- $I_{\alpha} \cap I_{\beta} = \phi$ if $\alpha \neq \beta$.

Clearly, $E = \bigcup_{\alpha} I_{\alpha}$ is the desired union.

7. Rudin Chapter 2 Exercise 30.

Solution: Note that we may assume that all F_n are nonempty, since empty set does not contribute to the union. Suppose that $F_n^o = \emptyset$ for all n. Take $x_1 \in F_1$ and some ball $B_{r_1}(x_1)$ centered at x_1 . By our assumption x_1 is not interior point of F_1 .

- 8. Rudin Chapter 2 Exercise 19ab.
- 9. Rudin Chapter 2 Exercise 21.