Name and Student ID's: \qquad

Homework 6, Advanced Calculus 1

!!! Please note the new group and classroom assignment !!!

1. Rudin Chapter 3 Exercise 24ab.

Solution: (a) For every Cauchy sequences $\left\{p_{n}\right\},\left\{q_{n}\right\}$, we readily verify

- $\lim _{n \rightarrow \infty} d\left(p_{n}, p_{n}\right)=\lim _{n \rightarrow \infty} 0=0 \Rightarrow\left\{p_{n}\right\} \sim\left\{p_{n}\right\}$.
- $\left\{p_{n}\right\} \sim\left\{q_{n}\right\} \Rightarrow 0=\lim _{n \rightarrow \infty} d\left(p_{n}, q_{n}\right)=\lim _{n \rightarrow \infty} d\left(q_{n}, p_{n}\right) \Rightarrow\left\{q_{n}\right\}\left\{p_{n}\right\}$.
- $\left\{p_{n}\right\} \sim\left\{q_{n}\right\}$ and $\left\{q_{n}\right\} \sim\left\{r_{n}\right\} \Rightarrow \lim _{n \rightarrow \infty} d\left(p_{n}, r_{n}\right) \leq \lim _{n \rightarrow \infty}\left(d\left(p_{n}, q_{n}\right)+d\left(q_{n}, r_{n}\right)\right)=0+0=$ $0 \Rightarrow\left\{p_{n}\right\} \sim\left\{r_{n}\right\}$.
(b) Suppose $\left\{p_{n}\right\} \sim\left\{p_{n}^{\prime}\right\}$ and $\left\{q_{n}\right\} \sim\left\{q_{n}^{\prime}\right\}$, we have $\lim _{n \rightarrow \infty} d\left(p_{n}, p_{n}^{\prime}\right)=\lim _{n \rightarrow \infty} d\left(q_{n}, q_{n}^{\prime}\right)=0$. Therefore

$$
\lim _{n \rightarrow \infty} d\left(p_{n}, q_{n}\right) \leq \lim _{n \rightarrow \infty} d\left(p_{n}, p_{n}^{\prime}\right)+\lim _{n \rightarrow \infty} d\left(p_{n}^{\prime}, q_{n}^{\prime}\right)+\lim _{n \rightarrow \infty} d\left(q_{n}^{\prime}, q_{n}^{\prime}\right)
$$

and the first, third terms are both zero due to their equivalence. So the function Δ is independent of choice of representatives and therefore defines a function on X^{*}. Since d is a metric, whose reflexivity and triangle inequality are preserved under limit operation, we see clearly that Δ is a metric on X^{*}. For the remaining parts of this problem, we will write P for both a Cauchy sequence and the equivalence class it belongs.
2. Rudin Chapter 3 Exercise 24c.

Solution: Let $\left\{P^{m}\right\}_{m} \subset X^{*}$ be Cauchy (in Δ). For all $\epsilon>0$, there are two $\epsilon-N$ arguments we will utilize:
(i) Since $\left\{P^{m}\right\}_{m}$ is Δ - Cauchy, there exists M_{ϵ} such that

$$
\Delta\left(P^{m}, P^{r}\right)=\lim _{k \rightarrow \infty} d\left(p_{k}^{m}, p_{k}^{r}\right)<\frac{\epsilon}{3}
$$

for all $m, r>M_{\epsilon}$. The statement can be rephrased as

$$
\text { There exists } M_{\epsilon}, K_{\epsilon, m, n} \in \mathbb{N} \text { so that } d\left(p_{k}^{m}, p_{k}^{r}\right)<\frac{\epsilon}{3} \forall m, r>M_{\epsilon}, k>K_{\epsilon, m, n} .
$$

(ii) For all $m \in \mathbb{N}$, since $P^{m}=\left\{p_{n}^{m}\right\}$ is a Cauchy sequence in X, there exist N_{m} so that $d\left(p_{n}^{m}, p_{l}^{m}\right)<$ $\frac{\epsilon}{3}$ for all $n, l>N_{m}$.

From the sequence of sequences above, take $P=\left\{p_{N_{k}}^{k}\right\}_{k}$, where N_{k} is chosen according to (ii) above. We must show that P is Cauchy in d and $\Delta\left(P^{m}, P\right) \rightarrow 0$ as $m \rightarrow \infty$. Again starting with an arbitrary $\epsilon>0$, for $k>l>M_{\epsilon}$ in (i), we have

$$
d\left(p_{N_{k}}^{k}, p_{N_{l}}^{l}\right) \leq d\left(p_{N_{k}}^{k}, p_{v}^{k}\right)+d\left(p_{v}^{k}, p_{v}^{l}\right)+d\left(p_{v}^{l}, p_{N_{l}}^{l}\right)
$$

for any v. Take $v>\max \left(N_{k}, N_{l}, K_{k, l}\right.$, then according to the descriptions of (i) and (ii), the sum above is less than ϵ. Therefore, P is Cauchy in d.
To show that $P^{m} \rightarrow P$, we estimate

$$
\Delta\left(P^{m}, P\right)=\lim _{k \rightarrow \infty} d\left(p_{k}^{m}, p_{N_{k}}^{k}\right)
$$

Follow similar logics, we have

$$
d\left(p_{k}^{m}, p_{N_{k}}^{k}\right) \leq d\left(p_{k}^{m}, p_{v}^{m}\right)+d\left(p_{v}^{m}, p_{v}^{k}\right)+d\left(p_{v}^{k}, p_{N_{k}}^{k}\right)
$$

For $m>M_{\epsilon}, k>\max \left(M_{\epsilon}, N_{m}\right)$, and $v>\max \left(M_{\epsilon}, N_{m}, N_{k}, K_{\epsilon, m, k}\right)$, the above sum is then less than ϵ and result follows.
3. Rudin Chapter 3 Exercise 24d.

Solution: With the given constant (and therefore Cauchy) sequences P_{p} and P_{q}, it is clear from definition that $\Delta\left(P_{p}, P_{q}\right)=d(p, q)$. The surjective mapping $\varphi: X \rightarrow X^{*}$ given by $\varphi(p)=P_{p}$ is clearly injective. Since for all $p \neq q$ in X, we have $\Delta\left(P_{p} . P_{q}\right)=d(p, q)>0$ and therefore $P_{p} \neq P_{q}$.
4. Rudin Chapter 3 Exercise 24e.

Solution: Take any $P \in X^{*}$ and $\epsilon>0$, let the Cauchy sequence $\left\{p_{k}\right\}$ be a representative of P. Since it is Cauchy, there is N_{ϵ} so that $d\left(p_{n}, p_{m}\right)<\epsilon$ for all $n, m>N_{\epsilon}$. We then have

$$
\Delta\left(P_{p_{N_{\epsilon}}}, P\right)=\lim _{k \rightarrow \infty} d\left(p_{k}, p_{N_{\epsilon}}\right) \leq \epsilon
$$

and therefore $\varphi(X)$ is dense in X^{*}. If X is complete, $\left\{p_{k}\right\}$ is convergent with limit p. Therefore

$$
\Delta\left(P_{p}, P\right)=\lim _{k \rightarrow \infty} d\left(p, p_{k}\right)=0
$$

or $P_{p}=P$. Therefore $\varphi(X)=X^{*}$.
5. Rudin Chapter 3 Exercise 21.
6. Rudin Chapter 3 Exercise 22.
7. Rudin Chapter 3 Exercise 23.
8. Given $f: A \rightarrow B$ and $\left\{E_{\alpha}\right\}$ a collection of subsets of B, prove that
(a) $f^{-1}\left(\cup_{\alpha} E_{\alpha}\right)=\cup_{\alpha} f^{-1}\left(E_{\alpha}\right)$.
(b) $f^{-1}\left(\cap_{\alpha} E_{\alpha}\right)=\cap_{\alpha} f^{-1}\left(E_{\alpha}\right)$.
(c) $f^{-1}\left(E_{\alpha}^{c}\right)=f^{-1}\left(E_{\alpha}\right)^{c}$.
9. Prove that 8 a is still true with f^{-1} replaced by f, but 8 b and 8 c no longer hold.

