Name and Student ID's: \qquad

Homework 7, Advanced Calculus 1

1. Rudin Chapter 4 Exercise 20a.
2. Rudin Chapter 4 Exercise 20b.
3. Rudin Chapter 4 Exercise 21.
4. Rudin Chapter 4 Exercise 22.

The Cantor Function is defined by $f:[0,1] \rightarrow[0,1]$ with the following rules. Recall that every $x \in[0,1]$ can be written in tertiary expression $x=\sum_{j} a_{j} 3^{-j}$, with $a_{j}=0,1,2$. The expression is unique except that

$$
\sum_{j=1}^{N-1} a_{j} 3^{-j}+a_{N} 3^{-N}+\sum_{j=N+1}^{\infty} 2 \cdot 3^{-j}=\sum_{j=1}^{N-1} a_{j} 3^{-j}+\left(a_{N}+1\right) 3^{-N}
$$

We pick the first expression to ensure uniqueness. The Cantor set $C \subset[0,1]$ is defined by those real numbers with $a_{j} \neq 1 \forall j$. We define f separately on C and C^{c}. For $x=\sum_{j} a_{j} 3^{-j} \in C$, we define

$$
f(x)=\sum_{j} \frac{a_{j}}{2} 2^{-j}
$$

For $x=\sum_{j} a_{j} 3^{-j} \in C^{c}$, we define

$$
f(x)=\sum_{j=1}^{J_{x}-1} \frac{a_{j}}{2} 2^{-j}+2^{-J_{x}}
$$

where J_{x} is the first digit of x with $a_{j}=1$.
Problems 5,6 concern the Cantor function and related topics.
5. Prove that the Cantor function f is uniformly continuous on $[0,1]$ and differentiable on C^{c}.
6. Prove that there exist constants $C, \alpha>0$ so that

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha} \quad \forall x, y \in[0,1] .
$$

7. Functions satisfying the condition in Problem 6 on its domain is said to be Hölder continuous with exponent α. Prove that
$\{$ Hölder continuous function $\} \subsetneq\{$ Uniformly Continuous Functions $\}$.
8. Rudin Chapter 4 Exercise 25.
9. Rudin Chapter 4 Exercise 26.
