Name and Student ID’s:

Homework 7, Advanced Calculus 1
1. Rudin Chapter 4 Exercise 20a.

Solution:

Suppose that pg(r) = 0 = inf,cp d(z, z). For all € > 0, by definition of infimum, there is z. € £ so
that 0 < d(z, z.) < € and therefore x € E. Conversely, © € E implies that the set of {d(z,2)}.ck
consist of nonnegative numbers that are arbitrarily small, and therefore the infimum must be 0.

2. Rudin Chapter 4 Exercise 20b.

Solution:
Given z,y € X, for every z € E, we have pg(z) < d(z,2z) < d(z,y) + d(y,z). That is pg(x) —
d(z,y) < d(y,z) for all z € E, or pg(xz) — d(z,y) is a lower bound for {d(y, 2)},cr. Therefore,

pe(x) —d(z,y) < inf{d(y, 2)}.ee = pe(Y), or pe(x) — pe(y) < d(z,y). Exchanging z and y, we get
pE(y) — pr(x) < d(y,z) = d(z,y). Therefore, |pp(x) — pr(y)| < d(x,y) and result follows.

3. Rudin Chapter 4 Exercise 21.

Solution: By Exercise 20, pg : K — I is a continuous function on X and therefore on the compact
set K. Therefore pp attains a minimum on K:

pr(zo) = inf pr(2).

It then suffices to show that pp(z) > 0 Vo € K, which follows easily from Exercise 20. Indeed, if
pr(z) =0 for some x € K, then x € F. But since F is closed, we have F'= F = x € K N F, which
is a contradiction.

4. Rudin Chapter 4 Exercise 22.

Solution:

Since p4 and pp are both continuous function, f is continuous except at point p where pa(p) +
pB(p) = 0. But since both functions are nonnegative, it only happens when pa(p) = pp(p) = 0, or
p € AN B. However, since both sets are closed, we have x € AN B, contradicting the fact ANB = ).

f(p) = 0 precisely when pa(p) = 0 and pa(p) + pp(p) > 0, which are true iff p € A = A. f(p) =
1< pa(p) = palp) + pa(p) & pe(p) =04 pe B=B.

It is clear that A = f~1(0) ¢ V = f~1([0,1)) and similarly B C W. The openness of V and
W follow from the fact that 0 < f(X) < 1 and therefore V = f71([0,3)) = f~'((—1,3)) and
W= f"Y(=3,1]) = f7'((3,2)) plus the continuity of f.

The Cantor Function is defined by f : [0, 1] — [0, 1] with the following rules. Recall that every z € [0, 1]
can be written in tertiary expression z = Ej a;377, with a; = 0,1,2. The expression is unique except
that



N-1 oo N-1
a3 a3+ > 2:37 =1 a;37 + (ay +1)37".
j=1 j=N+1 Jj=1

We pick the first expression to ensure uniqueness. The Cantor set C' C [0,1] is defined by those real
numbers with a; # 1 Vj. We define f separately on C and C¢. For z = Zj a;377 € C, we define

fa) =3 G2,

For z =}, a;377 € C°, we define

where J; is the first digit of x with a; = 1.

Problems 5,6 concern the Cantor function and related topics.

5. Prove that the Cantor function f is uniformly continuous on [0, 1] and differentiable on C°.

Solution: Continuity follows clearly from Problem 6 and 7 below. It is differentiable on C¢ since
every x € C° is contained in an open interval on which f is constant. It is therefore differentiable
at x with f/(z) = 0.

6. Prove that there exist constants K, a > 0 so that

[f (@) = f(y)] < K|z —y|* Va,y €[0,1]. (1)

Solution: First we check that f is monotonic. Given y = 3, ;37 <z = > b;377, there is
N € N so that ay < by (ie. (0,1),(1,2),(0,2)) and a; = b; Vj < N. By definition of f, the first
N — 1 digits of f(z) and f(y) are still the same and the N** digit of f(y) is less or equal to that of
f(z). The digits after the N*" are of course irrelevant to the order. Therefore f(y) < f(z) and the
function is monotonically increasing.

The inequality above is certainly true if z = y. Take y < z, with the expression in the first paragraph.
There are four possibilities:

e z,ycC.
e xc(C,yc(C°.
e xc(CyedC.

o z,yc C°.

We first obverse that it suffices to prove the first case. Indeed, for every t = >_ . aj3*j € C° let any
be the first digit with ay = 1. Then there are t; < t < to with ¢1,t2 € C and f(t1) = f(t) = f(t2).
t; and to are the two endpoints of the open interval ¢ belongs to. Explicitly, ¢; = ij_ll a;377 +

Yn412-377 and ty = Zj\;l a;377 4+ 237N, With these observations, for every y < z in [0, 1],
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there exist then y’ < 2/, both in C, so that f(z) = f(2'), f(y) = f(¥), and |2’ — ¢/| < |z — y|.
Therefore, if

[f @) = fW)] < Cla’ = o],

we certainly have

|f(z) = f(y)| < Clo —y|*

We now prove the first case. For y = Zj aj3’j <z= Zj bjS*j, sincex,y € C,weay =0 < by = 2.
Then,

[f@) =l = 277+ Z Ao

j=N+1
< 27 N4 o2
j=N+1
= o27N*L
On the other hand
|x—y|*23N+Z a;)377 >2.37N — Z23J73N
j=N+1 j=N+1

Therefore, take o = logs 2, we have |z — y|* > 2~V and

[f(x) = f(y)]

<9
|z —y[*

— )

which is the desired inequality.

7. Functions satisfying the condition in Problem 6 on its domain is said to be Hélder continuous with
exponent «. Prove that

{Hélder continuous function} C {Uniformly Continuous Functions}.

Solution: The inclusion is easy. Let f satisfies (1) in Problem 6. For all e, take 6 = % then uniform
continuity follows.

For the properness of this inclusion, consider

1y
f@) = { | @

0; x=0.

1

The function is continuous on [0, %], and therefore uniformly continuous since [0, 5] is compact.

However, for any o > 0, by L’Hospital’s rule, we have
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1
log x

lim =00
x—0 &
and therefore (1) is impossible with y = 0.
8. Rudin Chapter 4 Exercise 25.
Solution:
(a) Note that the distance we use here is the Euclidean distance d(a,b) = |ja — b||.

Following the hint, we show that (K +C)¢ is open. Let z € (K +C)¢ and consider F = z—C :=
{z—c|ceC}. Itisclear that FNK = (. Sinceif x € FN K,z = z — y for some y € C,
then z = y 4+ € C + K, contradicting z € (K + C)°. It is also clear that F' is closed, since if
€l ,z—xeC' CC asC is closed. Therefore x € F.

We now have a closed set F' and a compact set K disjoint from each other. By Exercise 21,
there is § > 0 so that d(p,q) > 6 for all p € K,q € F. We finally show that

Bs(z)N(K+C)=10

and the openness of (K 4+ C)°, or the closedness of K + C follows. To the contrary, suppose
that we have a +b € Bs(z) N (K 4+ C), where a € K,b € C. Since a + b € Bs(z), we have

la+b—z|| =d(a+b,z)<é.

On the other hand, since b € C', we have z — b € F. With a € K, we have

la+b—z|| =lla—(z—=0b)|| =d(a,z—b) > .
The two inequalities contradict each other and we have Bs(z) N (K + C) = 0.

Cy =Z and Cy = {ma | m € Z} for some « ¢ Q. Both sets are closed since both of them have
no limit point. We show that C' = C; + C5 is not closed. The result follows if we show that
C' is dense in R. This is true because C is clearly countable. If it is dense, then it can not be
closed. Otherwise, we have

R=C=C

but the right hand side is countable while the left hand side is not.

We now show that C' is dense. For any z € R, define (z) = « — [z] to be the fractional part of
x. Here, [z] is the largest integer < z. Since a ¢ Q, we have (ma) # (m'«) if m,m’ are two
distinct integers. Indeed, if (ma) = (m'a) while m # m/, we have ma — [ma] = m’a — [m’/a.

But then o = % € Q, a contradiction.

For each n, divide [0, 1] into n subintervals of length +. By the discussion above, {(ja)}_, is a
set of n distinct values in [0, 1]. By pigeonhole principle, two of these values, say (ma) < (m'a)

belong to one subinterval. Their distance is then less than %, and we have

0 < (m'a)— (ma) =m'a—[m'al — ma+ [ma) = (m' — m)a + ([m'a] — [mal]) < %
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Let a,, = (m' — m)a + ([m'a] — [ma]) € (0,2). For any x € [0,1], it is now clear that
z € (rag, (r+ 1)ay,) for some integer r, and the length of the interval is less than % Finally,
for z € R, we have x = [z] + (x). [z] € Z and (z) € [0,1]. For all n € N, there is a,, € C so
that |() — o] < +. Then [z] + o, € C and |[z] + i — 7] < +.

9. Rudin Chapter 4 Exercise 26.

Solution: Since g : Y — Z is one-to-one, g : Y — g(Y) is surjective and we have g=1 : g(Y) — Y.
By Theorem 4.17, ¢! is continuous. The continuity of f follows easily by the observation that
f =g ! oh and both functions on the right are continuous.

In addition, since g is continuous and Y is compact, g(Y') is compact and therefore g~ ! : g(Y) — Y
is uniformly continuous. Therefore, if h is uniformly continuous, so is f.

If Y is no longer compact but X and Z are, the statement fails by considering the following coun-
terexample. X = [0,1],Y = [0,F), and Z be the unit circle in R2. Let f : X — Y be defined
by

tan~!(—logx) ; = € (0,1).

f(x)z{o””zo 3)

g(t) = (cos(4t),sin(4t)). Then h = fog : [0,1] — S! is continuous, and therefore uniformly
continuous. ¢ is continuous and one-to-one, however, f is not even continuous.
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