Homework 7, Advanced Calculus 1

1. Rudin Chapter 4 Exercise 20a.

Solution:

Suppose that $\rho_{E}(x)=0=\inf _{z \in E} d(x, z)$. For all $\epsilon>0$, by definition of infimum, there is $z_{\epsilon} \in E$ so that $0 \leq d\left(x, z_{\epsilon}\right)<\epsilon$ and therefore $x \in \bar{E}$. Conversely, $x \in \bar{E}$ implies that the set of $\{d(x, z)\}_{z \in E}$ consist of nonnegative numbers that are arbitrarily small, and therefore the infimum must be 0 .
2. Rudin Chapter 4 Exercise 20b.

Solution:

Given $x, y \in X$, for every $z \in E$, we have $\rho_{E}(x) \leq d(x, z) \leq d(x, y)+d(y, z)$. That is $\rho_{E}(x)-$ $d(x, y) \leq d(y, z)$ for all $z \in E$, or $\rho_{E}(x)-d(x, y)$ is a lower bound for $\{d(y, z)\}_{z \in E}$. Therefore, $\rho_{E}(x)-d(x, y) \leq \inf \{d(y, z)\}_{z \in E}=\rho_{E}(y)$, or $\rho_{E}(x)-\rho_{E}(y) \leq d(x, y)$. Exchanging x and y, we get $\rho_{E}(y)-\rho_{E}(x) \leq d(y, x)=d(x, y)$. Therefore, $\left|\rho_{E}(x)-\rho_{E}(y)\right| \leq d(x, y)$ and result follows.
3. Rudin Chapter 4 Exercise 21.

Solution: By Exercise 20, $\rho_{K}: K \rightarrow F$ is a continuous function on X and therefore on the compact set K. Therefore ρ_{F} attains a minimum on K :

$$
\rho_{F}\left(x_{0}\right)=\inf _{x \in K} \rho_{F}(x)
$$

It then suffices to show that $\rho_{F}(x)>0 \forall x \in K$, which follows easily from Exercise 20. Indeed, if $\rho_{F}(x)=0$ for some $x \in K$, then $x \in \bar{F}$. But since F is closed, we have $\bar{F}=F \Rightarrow x \in K \cap F$, which is a contradiction.
4. Rudin Chapter 4 Exercise 22.

Solution:

Since ρ_{A} and ρ_{B} are both continuous function, f is continuous except at point p where $\rho_{A}(p)+$ $\rho_{B}(p)=0$. But since both functions are nonnegative, it only happens when $\rho_{A}(p)=\rho_{B}(p)=0$, or $p \in \bar{A} \cap \bar{B}$. However, since both sets are closed, we have $x \in A \cap B$, contradicting the fact $A \cap B=\emptyset$. $f(p)=0$ precisely when $\rho_{A}(p)=0$ and $\rho_{A}(p)+\rho_{B}(p)>0$, which are true iff $p \in \bar{A}=A . f(p)=$ $1 \Leftrightarrow \rho_{A}(p)=\rho_{A}(p)+\rho_{B}(p) \Leftrightarrow \rho_{B}(p)=0 \Leftrightarrow p \in \bar{B}=B$.
It is clear that $A=f^{-1}(0) \subset V=f^{-1}\left(\left[0, \frac{1}{2}\right)\right)$ and similarly $B \subset W$. The openness of V and W follow from the fact that $0 \leq f(X) \leq 1$ and therefore $V=f^{-1}\left(\left[0, \frac{1}{2}\right)\right)=f^{-1}\left(\left(-\frac{1}{2}, \frac{1}{2}\right)\right)$ and $W=f^{-1}\left(\left(-\frac{1}{2}, 1\right]\right)=f^{-1}\left(\left(\frac{1}{2}, 2\right)\right)$ plus the continuity of f.

The Cantor Function is defined by $f:[0,1] \rightarrow[0,1]$ with the following rules. Recall that every $x \in[0,1]$ can be written in tertiary expression $x=\sum_{j} a_{j} 3^{-j}$, with $a_{j}=0,1,2$. The expression is unique except that

$$
\sum_{j=1}^{N-1} a_{j} 3^{-j}+a_{N} 3^{-N}+\sum_{j=N+1}^{\infty} 2 \cdot 3^{-j}=\sum_{j=1}^{N-1} a_{j} 3^{-j}+\left(a_{N}+1\right) 3^{-N}
$$

We pick the first expression to ensure uniqueness. The Cantor set $C \subset[0,1]$ is defined by those real numbers with $a_{j} \neq 1 \forall j$. We define f separately on C and C^{c}. For $x=\sum_{j} a_{j} 3^{-j} \in C$, we define

$$
f(x)=\sum_{j} \frac{a_{j}}{2} 2^{-j}
$$

For $x=\sum_{j} a_{j} 3^{-j} \in C^{c}$, we define

$$
f(x)=\sum_{j=1}^{J_{x}-1} \frac{a_{j}}{2} 2^{-j}+2^{-J_{x}}
$$

where J_{x} is the first digit of x with $a_{j}=1$.
Problems 5,6 concern the Cantor function and related topics.
5. Prove that the Cantor function f is uniformly continuous on $[0,1]$ and differentiable on C^{c}.

Solution: Continuity follows clearly from Problem 6 and 7 below. It is differentiable on C^{c} since every $x \in C^{c}$ is contained in an open interval on which f is constant. It is therefore differentiable at x with $f^{\prime}(x)=0$.
6. Prove that there exist constants $K, \alpha>0$ so that

$$
\begin{equation*}
|f(x)-f(y)| \leq K|x-y|^{\alpha} \forall x, y \in[0,1] \tag{1}
\end{equation*}
$$

Solution: First we check that f is monotonic. Given $y=\sum_{j} a_{j} 3^{-j}<x=\sum_{j} b_{j} 3^{-j}$, there is $N \in \mathbb{N}$ so that $a_{N}<b_{N}$ (ie. $\left.(0,1),(1,2),(0,2)\right)$ and $a_{j}=b_{j} \forall j<N$. By definition of f, the first $N-1$ digits of $f(x)$ and $f(y)$ are still the same and the $N^{t h}$ digit of $f(y)$ is less or equal to that of $f(x)$. The digits after the $N^{t h}$ are of course irrelevant to the order. Therefore $f(y) \leq f(x)$ and the function is monotonically increasing.

The inequality above is certainly true if $x=y$. Take $y<x$, with the expression in the first paragraph. There are four possibilities:

- $x, y \in C$.
- $x \in C, y \in C^{c}$.
- $x \in C^{c}, y \in C$.
- $x, y \in C^{c}$.

We first obverse that it suffices to prove the first case. Indeed, for every $t=\sum_{j} a_{j} 3^{-j} \in C^{c}$, let a_{N} be the first digit with $a_{N}=1$. Then there are $t_{1}<t<t_{2}$ with $t_{1}, t_{2} \in C$ and $f\left(t_{1}\right)=f(t)=f\left(t_{2}\right)$. t_{1} and t_{2} are the two endpoints of the open interval t belongs to. Explicitly, $t_{1}=\sum_{j=1}^{N-1} a_{j} 3^{-j}+$ $\sum_{N+1}^{\infty} 2 \cdot 3^{-j}$ and $t_{2}=\sum_{j=1}^{N-1} a_{j} 3^{-j}+2 \cdot 3^{-N}$. With these observations, for every $y<x$ in $[0,1]$,
there exist then $y^{\prime} \leq x^{\prime}$, both in C, so that $f(x)=f\left(x^{\prime}\right), f(y)=f\left(y^{\prime}\right)$, and $\left|x^{\prime}-y^{\prime}\right| \leq|x-y|$. Therefore, if

$$
\left|f\left(x^{\prime}\right)-f\left(y^{\prime}\right)\right| \leq C\left|x^{\prime}-y^{\prime}\right|^{\alpha}
$$

we certainly have

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha}
$$

We now prove the first case. For $y=\sum_{j} a_{j} 3^{-j}<x=\sum_{j} b_{j} 3^{-j}$, since $x, y \in C$, we $a_{N}=0<b_{N}=2$. Then,

$$
\begin{aligned}
|f(x)-f(y)| & =2^{-N}+\sum_{j=N+1}^{\infty} \frac{b_{j}-a_{j}}{2} 2^{-j} \\
& \leq 2^{-N}+\sum_{j=N+1}^{\infty} 2^{-j} \\
& =2^{-N+1}
\end{aligned}
$$

On the other hand

$$
|x-y|=2 \cdot 3^{-N}+\sum_{j=N+1}^{\infty}\left(b_{j}-a_{j}\right) 3^{-j} \geq 2 \cdot 3^{-N}-\sum_{j=N+1}^{\infty} 2 \cdot 3^{-j}=3^{-N}
$$

Therefore, take $\alpha=\log _{3} 2$, we have $|x-y|^{\alpha} \geq 2^{-N}$ and

$$
\frac{|f(x)-f(y)|}{|x-y|^{\alpha}} \leq 2
$$

which is the desired inequality.
7. Functions satisfying the condition in Problem 6 on its domain is said to be Hölder continuous with exponent α. Prove that
$\{$ Hölder continuous function $\} \subsetneq\{$ Uniformly Continuous Functions $\}$.

Solution: The inclusion is easy. Let f satisfies (1) in Problem 6. For all ϵ, take $\delta=\frac{\epsilon^{\alpha}}{K}$ then uniform continuity follows.
For the properness of this inclusion, consider

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{\log x} ; x \in\left(0, \frac{1}{2}\right] \tag{2}\\
0 ; x=0
\end{array}\right.
$$

The function is continuous on $\left[0, \frac{1}{2}\right]$, and therefore uniformly continuous since $\left[0, \frac{1}{2}\right]$ is compact. However, for any $\alpha>0$, by L'Hospital's rule, we have

$$
\lim _{x \rightarrow 0} \frac{\frac{1}{\log x}}{x^{\alpha}}=\infty
$$

and therefore (1) is impossible with $y=0$.
8. Rudin Chapter 4 Exercise 25.

Solution:

(a) Note that the distance we use here is the Euclidean distance $d(a, b)=\|a-b\|$.

Following the hint, we show that $(K+C)^{c}$ is open. Let $z \in(K+C)^{c}$ and consider $F=z-C:=$ $\{z-c \mid c \in C\}$. It is clear that $F \cap K=\emptyset$. Since if $x \in F \cap K, x=z-y$ for some $y \in C$, then $z=y+x \in C+K$, contradicting $z \in(K+C)^{c}$. It is also clear that F is closed, since if $x \in F^{\prime}, z-x \in C^{\prime} \subset C$ as C is closed. Therefore $x \in F$.
We now have a closed set F and a compact set K disjoint from each other. By Exercise 21, there is $\delta>0$ so that $d(p, q)>\delta$ for all $p \in K, q \in F$. We finally show that

$$
B_{\delta}(z) \cap(K+C)=\emptyset
$$

and the openness of $(K+C)^{c}$, or the closedness of $K+C$ follows. To the contrary, suppose that we have $a+b \in B_{\delta}(z) \cap(K+C)$, where $a \in K, b \in C$. Since $a+b \in B_{\delta}(z)$, we have

$$
\|a+b-z\|=d(a+b, z)<\delta
$$

On the other hand, since $b \in C$, we have $z-b \in F$. With $a \in K$, we have

$$
\|a+b-z\|=\|a-(z-b)\|=d(a, z-b)>\delta
$$

The two inequalities contradict each other and we have $B_{\delta}(z) \cap(K+C)=\emptyset$.
(b) $C_{1}=\mathbb{Z}$ and $C_{2}=\{m \alpha \mid m \in \mathbb{Z}\}$ for some $\alpha \notin \mathbb{Q}$. Both sets are closed since both of them have no limit point. We show that $C=C_{1}+C_{2}$ is not closed. The result follows if we show that C is dense in \mathbb{R}. This is true because C is clearly countable. If it is dense, then it can not be closed. Otherwise, we have

$$
\mathbb{R}=\bar{C}=C
$$

but the right hand side is countable while the left hand side is not.
We now show that C is dense. For any $x \in \mathbb{R}$, define $(x)=x-[x]$ to be the fractional part of x. Here, $[x]$ is the largest integer $\leq x$. Since $\alpha \notin \mathbb{Q}$, we have $(m \alpha) \neq\left(m^{\prime} \alpha\right)$ if m, m^{\prime} are two distinct integers. Indeed, if $(m \alpha)=\left(m^{\prime} \alpha\right)$ while $m \neq m^{\prime}$, we have $m \alpha-[m \alpha]=m^{\prime} \alpha-\left[m^{\prime} \alpha\right]$. But then $\alpha=\frac{[m \alpha]-\left[m^{\prime} \alpha\right]}{m-m^{\prime}} \in \mathbb{Q}$, a contradiction.
For each n, divide $[0,1]$ into n subintervals of length $\frac{1}{n}$. By the discussion above, $\{(j \alpha)\}_{j=1}^{n}$ is a set of n distinct values in $[0,1]$. By pigeonhole principle, two of these values, say $(m \alpha)<\left(m^{\prime} \alpha\right)$ belong to one subinterval. Their distance is then less than $\frac{1}{n}$, and we have

$$
0<\left(m^{\prime} \alpha\right)-(m \alpha)=m^{\prime} \alpha-\left[m^{\prime} \alpha\right]-m \alpha+[m \alpha]=\left(m^{\prime}-m\right) \alpha+\left(\left[m^{\prime} \alpha\right]-[m \alpha]\right)<\frac{1}{n}
$$

Let $\alpha_{n}=\left(m^{\prime}-m\right) \alpha+\left(\left[m^{\prime} \alpha\right]-[m \alpha]\right) \in\left(0, \frac{1}{n}\right)$. For any $x \in[0,1]$, it is now clear that $x \in\left(r \alpha_{n},(r+1) \alpha_{n}\right)$ for some integer r, and the length of the interval is less than $\frac{1}{n}$. Finally, for $x \in \mathbb{R}$, we have $x=[x]+(x) .[x] \in \mathbb{Z}$ and $(x) \in[0,1]$. For all $n \in \mathbb{N}$, there is $\alpha_{n} \in C$ so that $\left|(x)-\alpha_{n}\right|<\frac{1}{n}$. Then $[x]+\alpha_{n} \in C$ and $\left|[x]+\alpha_{n}-x\right|<\frac{1}{n}$.
9. Rudin Chapter 4 Exercise 26.

Solution: Since $g: Y \rightarrow Z$ is one-to-one, $g: Y \rightarrow g(Y)$ is surjective and we have $g^{-1}: g(Y) \rightarrow Y$. By Theorem 4.17, g^{-1} is continuous. The continuity of f follows easily by the observation that $f=g^{-1} \circ h$ and both functions on the right are continuous.
In addition, since g is continuous and Y is compact, $g(Y)$ is compact and therefore $g^{-1}: g(Y) \rightarrow Y$ is uniformly continuous. Therefore, if h is uniformly continuous, so is f.

If Y is no longer compact but X and Z are, the statement fails by considering the following counterexample. $X=[0,1], Y=\left[0, \frac{\pi}{2}\right)$, and Z be the unit circle in \mathbb{R}^{2}. Let $f: X \rightarrow Y$ be defined by

$$
f(x)=\left\{\begin{array}{l}
0 ; x=0 \tag{3}\\
\tan ^{-1}(-\log x) ; x \in(0,1)
\end{array}\right.
$$

$g(t)=(\cos (4 t), \sin (4 t))$. Then $h=f \circ g:[0,1] \rightarrow S^{1}$ is continuous, and therefore uniformly continuous. g is continuous and one-to-one, however, f is not even continuous.

