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Homework 7, Advanced Calculus 1

1. Rudin Chapter 4 Exercise 20a.

Solution:

Suppose that ρE(x) = 0 = infz∈E d(x, z). For all ε > 0, by definition of infimum, there is zε ∈ E so
that 0 ≤ d(x, zε) < ε and therefore x ∈ Ē. Conversely, x ∈ Ē implies that the set of {d(x, z)}z∈E
consist of nonnegative numbers that are arbitrarily small, and therefore the infimum must be 0.

2. Rudin Chapter 4 Exercise 20b.

Solution:

Given x, y ∈ X, for every z ∈ E, we have ρE(x) ≤ d(x, z) ≤ d(x, y) + d(y, z). That is ρE(x) −
d(x, y) ≤ d(y, z) for all z ∈ E, or ρE(x) − d(x, y) is a lower bound for {d(y, z)}z∈E . Therefore,
ρE(x)− d(x, y) ≤ inf{d(y, z)}z∈E = ρE(y), or ρE(x)− ρE(y) ≤ d(x, y). Exchanging x and y, we get
ρE(y)− ρE(x) ≤ d(y, x) = d(x, y). Therefore, |ρE(x)− ρE(y)| ≤ d(x, y) and result follows.

3. Rudin Chapter 4 Exercise 21.

Solution: By Exercise 20, ρK : K → F is a continuous function on X and therefore on the compact
set K. Therefore ρF attains a minimum on K:

ρF (x0) = inf
x∈K

ρF (x).

It then suffices to show that ρF (x) > 0 ∀x ∈ K, which follows easily from Exercise 20. Indeed, if
ρF (x) = 0 for some x ∈ K, then x ∈ F̄ . But since F is closed, we have F̄ = F ⇒ x ∈ K ∩ F , which
is a contradiction.

4. Rudin Chapter 4 Exercise 22.

Solution:

Since ρA and ρB are both continuous function, f is continuous except at point p where ρA(p) +
ρB(p) = 0. But since both functions are nonnegative, it only happens when ρA(p) = ρB(p) = 0, or
p ∈ Ā∩ B̄. However, since both sets are closed, we have x ∈ A∩B, contradicting the fact A∩B = ∅.
f(p) = 0 precisely when ρA(p) = 0 and ρA(p) + ρB(p) > 0, which are true iff p ∈ Ā = A. f(p) =
1⇔ ρA(p) = ρA(p) + ρB(p)⇔ ρB(p) = 0⇔ p ∈ B̄ = B.

It is clear that A = f−1(0) ⊂ V = f−1([0, 12 )) and similarly B ⊂ W . The openness of V and
W follow from the fact that 0 ≤ f(X) ≤ 1 and therefore V = f−1([0, 12 )) = f−1((− 1

2 ,
1
2 )) and

W = f−1((− 1
2 , 1]) = f−1(( 1

2 , 2)) plus the continuity of f .

The Cantor Function is defined by f : [0, 1]→ [0, 1] with the following rules. Recall that every x ∈ [0, 1]
can be written in tertiary expression x =

∑
j aj3

−j , with aj = 0, 1, 2. The expression is unique except
that



N−1∑
j=1

aj3
−j + aN3−N +

∞∑
j=N+1

2 · 3−j =

N−1∑
j=1

aj3
−j + (aN + 1)3−N .

We pick the first expression to ensure uniqueness. The Cantor set C ⊂ [0, 1] is defined by those real
numbers with aj 6= 1 ∀j. We define f separately on C and Cc. For x =

∑
j aj3

−j ∈ C, we define

f(x) =
∑
j

aj
2

2−j .

For x =
∑
j aj3

−j ∈ Cc, we define

f(x) =

Jx−1∑
j=1

aj
2

2−j + 2−Jx ,

where Jx is the first digit of x with aj = 1.

Problems 5,6 concern the Cantor function and related topics.

5. Prove that the Cantor function f is uniformly continuous on [0, 1] and differentiable on Cc.

Solution: Continuity follows clearly from Problem 6 and 7 below. It is differentiable on Cc since
every x ∈ Cc is contained in an open interval on which f is constant. It is therefore differentiable
at x with f ′(x) = 0.

6. Prove that there exist constants K,α > 0 so that

|f(x)− f(y)| ≤ K|x− y|α ∀x, y ∈ [0, 1]. (1)

Solution: First we check that f is monotonic. Given y =
∑
j aj3

−j < x =
∑
j bj3

−j , there is
N ∈ N so that aN < bN (ie. (0, 1), (1, 2), (0, 2)) and aj = bj ∀j < N . By definition of f , the first
N − 1 digits of f(x) and f(y) are still the same and the N th digit of f(y) is less or equal to that of
f(x). The digits after the N th are of course irrelevant to the order. Therefore f(y) ≤ f(x) and the
function is monotonically increasing.

The inequality above is certainly true if x = y. Take y < x, with the expression in the first paragraph.
There are four possibilities:

• x, y ∈ C.

• x ∈ C, y ∈ Cc.

• x ∈ Cc, y ∈ C.

• x, y ∈ Cc.

We first obverse that it suffices to prove the first case. Indeed, for every t =
∑
j aj3

−j ∈ Cc, let aN
be the first digit with aN = 1. Then there are t1 < t < t2 with t1, t2 ∈ C and f(t1) = f(t) = f(t2).

t1 and t2 are the two endpoints of the open interval t belongs to. Explicitly, t1 =
∑N−1
j=1 aj3

−j +∑∞
N+1 2 · 3−j and t2 =

∑N−1
j=1 aj3

−j + 2 · 3−N . With these observations, for every y < x in [0, 1],
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there exist then y′ ≤ x′, both in C, so that f(x) = f(x′), f(y) = f(y′), and |x′ − y′| ≤ |x − y|.
Therefore, if

|f(x′)− f(y′)| ≤ C|x′ − y′|α,

we certainly have

|f(x)− f(y)| ≤ C|x− y|α.

We now prove the first case. For y =
∑
j aj3

−j < x =
∑
j bj3

−j , since x, y ∈ C, we aN = 0 < bN = 2.
Then,

|f(x)− f(y)| = 2−N +

∞∑
j=N+1

bj − aj
2

2−j

≤ 2−N +

∞∑
j=N+1

2−j

= 2−N+1.

On the other hand

|x− y| = 2 · 3−N +

∞∑
j=N+1

(bj − aj)3−j ≥ 2 · 3−N −
∞∑

j=N+1

2 · 3−j = 3−N .

Therefore, take α = log3 2, we have |x− y|α ≥ 2−N and

|f(x)− f(y)|
|x− y|α

≤ 2,

which is the desired inequality.

7. Functions satisfying the condition in Problem 6 on its domain is said to be Hölder continuous with
exponent α. Prove that

{Hölder continuous function} ( {Uniformly Continuous Functions}.

Solution: The inclusion is easy. Let f satisfies (1) in Problem 6. For all ε, take δ = εα

K then uniform
continuity follows.

For the properness of this inclusion, consider

f(x) =

{
1

log x ; x ∈ (0, 12 ]

0 ; x = 0.
(2)

The function is continuous on [0, 12 ], and therefore uniformly continuous since [0, 12 ] is compact.
However, for any α > 0, by L’Hospital’s rule, we have
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lim
x→0

1
log x

xα
=∞

and therefore (1) is impossible with y = 0.

8. Rudin Chapter 4 Exercise 25.

Solution:

(a) Note that the distance we use here is the Euclidean distance d(a, b) = ‖a− b‖.
Following the hint, we show that (K+C)c is open. Let z ∈ (K+C)c and consider F = z−C :=
{z − c | c ∈ C}. It is clear that F ∩ K = ∅. Since if x ∈ F ∩ K,x = z − y for some y ∈ C,
then z = y + x ∈ C +K, contradicting z ∈ (K + C)c. It is also clear that F is closed, since if
x ∈ F ′, z − x ∈ C ′ ⊂ C as C is closed. Therefore x ∈ F .

We now have a closed set F and a compact set K disjoint from each other. By Exercise 21,
there is δ > 0 so that d(p, q) > δ for all p ∈ K, q ∈ F . We finally show that

Bδ(z) ∩ (K + C) = ∅

and the openness of (K + C)c, or the closedness of K + C follows. To the contrary, suppose
that we have a+ b ∈ Bδ(z) ∩ (K + C), where a ∈ K, b ∈ C. Since a+ b ∈ Bδ(z), we have

‖a+ b− z‖ = d(a+ b, z) < δ.

On the other hand, since b ∈ C, we have z − b ∈ F . With a ∈ K, we have

‖a+ b− z‖ = ‖a− (z − b)‖ = d(a, z − b) > δ.

The two inequalities contradict each other and we have Bδ(z) ∩ (K + C) = ∅.

(b) C1 = Z and C2 = {mα | m ∈ Z} for some α /∈ Q. Both sets are closed since both of them have
no limit point. We show that C = C1 + C2 is not closed. The result follows if we show that
C is dense in R. This is true because C is clearly countable. If it is dense, then it can not be
closed. Otherwise, we have

R = C = C

but the right hand side is countable while the left hand side is not.

We now show that C is dense. For any x ∈ R, define (x) = x− [x] to be the fractional part of
x. Here, [x] is the largest integer ≤ x. Since α /∈ Q, we have (mα) 6= (m′α) if m,m′ are two
distinct integers. Indeed, if (mα) = (m′α) while m 6= m′, we have mα − [mα] = m′α − [m′α].

But then α = [mα]−[m′α]
m−m′ ∈ Q, a contradiction.

For each n, divide [0, 1] into n subintervals of length 1
n . By the discussion above, {(jα)}nj=1 is a

set of n distinct values in [0, 1]. By pigeonhole principle, two of these values, say (mα) < (m′α)
belong to one subinterval. Their distance is then less than 1

n , and we have

0 < (m′α)− (mα) = m′α− [m′α]−mα+ [mα] = (m′ −m)α+ ([m′α]− [mα]) <
1

n
.
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Let αn = (m′ − m)α + ([m′α] − [mα]) ∈ (0, 1
n ). For any x ∈ [0, 1], it is now clear that

x ∈ (rαn, (r + 1)αn) for some integer r, and the length of the interval is less than 1
n . Finally,

for x ∈ R, we have x = [x] + (x). [x] ∈ Z and (x) ∈ [0, 1]. For all n ∈ N, there is αn ∈ C so
that |(x)− αn| < 1

n . Then [x] + αn ∈ C and |[x] + αn − x| < 1
n .

9. Rudin Chapter 4 Exercise 26.

Solution: Since g : Y → Z is one-to-one, g : Y → g(Y ) is surjective and we have g−1 : g(Y )→ Y .
By Theorem 4.17, g−1 is continuous. The continuity of f follows easily by the observation that
f = g−1 ◦ h and both functions on the right are continuous.

In addition, since g is continuous and Y is compact, g(Y ) is compact and therefore g−1 : g(Y )→ Y
is uniformly continuous. Therefore, if h is uniformly continuous, so is f .

If Y is no longer compact but X and Z are, the statement fails by considering the following coun-
terexample. X = [0, 1], Y = [0, π2 ), and Z be the unit circle in R2. Let f : X → Y be defined
by

f(x) =

{
0 ; x = 0

tan−1(− log x) ; x ∈ (0, 1).
(3)

g(t) = (cos(4t), sin(4t)). Then h = f ◦ g : [0, 1] → S1 is continuous, and therefore uniformly
continuous. g is continuous and one-to-one, however, f is not even continuous.
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