
Name and Student ID’s:

Homework 9, Advanced Calculus 1

A topological space X is sequentially compact if every sequence has a convergent subsequence.
A compact space is sequentially compact (cf. Theorem 2.37 of Rudin, which is valid for general topological

spaces). The first two problems below will prove that for metric space, the two compactness properties are
actually equivalent.

1. Prove that for a sequentially compact metric space (X, d), every open cover has a countable subcover.

Solution: The statement follows from our earlier homework exercises. First we recall Exercises
23,24 of Chapter 2 (Problem 2, 3 of Homework 4). The two problems together say that if every
infinite subset of a metric space (X, d) has a limit point, then it has a countable base. A sequentially
compact metric space certain satisfies the sufficient condition, since every infinite subset contains
a sequence, and the limit of its convergent subsequence is a limit point. Let U = {Ui}i=1 be a
countable base: every open subset is a union of sets in U .

Given a open cover X = ∪αGα of X, for every α, we have Gα = ∪iαUiα where Uiα ∈ U . The set
{Uiα}α,iα is a subset of U and therefore countable, which we re-label by {Uij}j ⊂ {Ui}i and we have
X = ∪αGα = ∪jUij . For each j, pick ONE Gα that contains Uij , call it Gj . The choice is possible
due to the axiom of choice. We then clearly have X = ∪jGj , a countable subcover.

2. Use Problem 1 to show that (X, d) is compact.

Solution: Let X = ∪αGα. If there is a finite subcover, we are done. If not, by Problem 1, there is
a countable subcover X = ∪∞j=1Gj . Suppose this cover has NO finite subcover. Then we may take

a sequence as follows. Let x1 ∈ G1, and inductively, for each k, take xk /∈ ∪kj=1Gj possible due to
the assumption that the open cover above has no finite subcover. Since X is sequentially compact,
the sequence {xk}k has a convergent subsequence, which we still call {xk} for convenience. Now
xk → x as k →∞ and x ∈ Gn for some n. Since xk → x, there is K ∈ N so that xk ∈ Gn ∀k > K.
Increasing K if necessary, we may assume that K > n. But then we have xk ∈ Gn for some k > n,
contradicting our construction that xk /∈ ∪kj=1Gj . We conclude that the countable open cover above
has a finite subcover and therefore X is compact.

3. Rudin Chapter 7 Exercise 8

Solution: Let gm(x) =
∑m
n=1 cnI(x−xn). We first show that gm ⇒ f on [a, b]. Since |cnI(x−xn)| ≤

|cn| ∀x and
∑
|cn| converges, this follows easily from Theorem 7.10 (the Weirstrass M-Test). The

continuity of f then follows from continuity of each gm, which follows from continuity of each
I(x− xn) on [a, b]\{xj}.
For x ∈ [a, b]\{xj}, we have x 6= xn. There exists δ > 0 so that (x − δ, x + δ) ∩ {xj} = ∅. For all
y ∈ (x−δ, x+δ), we see that xn is less or greater than BOTH x and y. Therefore I(x−xn) = I(y−xn)
and the function is a constant on (x− δ, x+ δ) which is certainly continuous.

4. Rudin Chapter 7 Exercise 9



Solution: Since fn ⇒ f and each fn is continuous, so is f . For all ε > 0, there exist N ∈ N and
δ > 0 so that

• |fn(t)− f(t)| < ε
2 for all n > N and t ∈ E.

• |f(t)− f(x)| < ε
2 if |t− x| < δ.

Increasing N if necessary, since xn → x, we have d(xn, x) < δ for n large enough. We then have

|fn(xn)− f(x)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x)| < ε

for all n satisfying the requirement above.

The converse is false. Consider fn(x) = x2

x2+(1−nx)2 on (0, 1), which has a pointwise limit f = 0.

We observe that 0 ≤ f(x) ≤ x2

(1−nx)2 . For every x ∈ (0, 1) and xn → x, there exists ε > 0 so that

xn ∈ (x− ε, x+ ε) ⊂ (0, 1) for all n large enough. On that neighborhood, we have

0 ≤ fn(x) ≤ x2

[1− n(x+ ε)]2
,

and the right hand side approaches 0 as n→∞.

However, the convergence is not uniform since for every n, fn( 1
n ) = 1 and therefore fn does not

converge uniformly to 0.

5. Rudin Chapter 7 Exercise 10

Solution: We first prove that f is discontinuous precisely on Q, which is countable and dense.
Clearly, every function (nx) is discontinuous at p

n for p ∈ N with left limit = 1 and right limit

= 0. Therefore, each p
q ∈ Q, is a discontinuity for functions { (jqx)j2q2 }j∈N in the series. All the other

terms are continuous. Therefore limx→ p
q
− f(x) − limx→ p

q
+ f(x) =

∑∞
j=1

1
j2q2 > 0. On the other

hand, each (nx)
n2 is continuous on Qc and so is the partial sum

∑m
n=1

(nx)
n2 . Since | (nx)n2 | ≤ 1

n2 and∑
n

1
n2 converge,

∑m
n=1

(nx)
n2 ⇒ f and therefore f is continuous on Qc. Therefore, f is discontinuous

precisely on Q.

For the Riemann integrability, note that each (nx) is discontinuous at { pn}p∈N, and each bounded

interval [a, b] can only contain finitely many points of them, and so is the partial sum
∑m
n=1

(nx)
n2 .

Having finitely many discontinuities, it follows that
∑m
n=1

(nx)
n2 is Riemann integrable on [a, b], and

so is its uniform limit f as m→∞.

6. Rudin Chapter 7 Exercise 15

Solution: We claim that f satisfying these conditions is a constant function.

If not, there are points x < y so that ε = |f(x) − f(y)| > 0. Since {fn(t)} is equicontinuous, there
exists δ > 0 so that |s − t| < δ ⇒ |fn(s) − fn(t)| < ε for all n. Pick n larger enough so that
( xn ,

y
n ) ⊂ (s, t). Then |fn( xn ) − fn( yn )| < ε. But since fn(t) = f(nt), we have |fn( xn ) − fn( yn )| =

|f(x)− f(y)| = ε, a contradiction.
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7. Rudin Chapter 7 Exercise 16

Solution: Since fn(x) is pointwise convergent, it is pointwise bounded. Therefore {fn} satisfies the
condition for Arzela-Azcoli Theorem, and therefore it has a uniformly convergent subsequence. But
since fn has a pointwise limit, the subsequence is the sequence itself.

8. Rudin Chapter 7 Exercise 11

Solution: Repeat the proof of Theorem 3.42 and conclude that
∑
fngn is uniformly Cauchy and

therefore uniformly convergent.

9. Rudin Chapter 7 Exercise 12

Solution:

The solution is summarized from Group 4 - greatly appreciated!

First note that since |fn| ≤ g and fn ⇒ f , |f | ≤ g as well. Since
∫∞
0
g dx < ∞,

∫∞
0
fn dx and∫∞

0
fn dx exist and are all finite.

Second,
∫∞
0
g dx < ∞ means that the sequence sm :=

∫m
1
m
g dx converges to s =

∫∞
0
g dx. That is,

s− sm → 0 as m→∞. Precisely, for all ε > 0, there is Mε ∈ N so that

∫
[ 1
m ,m]c

g dx = lim
a→0

∫ 1
m

a

g dx+ lim
b→∞

∫ b

m

g dx <
ε

3
∀m > Mε. (1)

Now we estimate∣∣∣∣∫ ∞
0

fn dx−
∫ ∞
0

f dx

∣∣∣∣ ≤ ∫
[ 1
m ,m]c

|fn|dx+

∫ m

1
m

|fn − f | dx+

∫
[ 1
m ,m]c

|f |dx.

Since |fn|, |f | ≤ g, we have∣∣∣∣∫ ∞
0

fn dx−
∫ ∞
0

f dx

∣∣∣∣ ≤ 2

∫
[ 1
m ,m]c

g dx+

∫ m

1
m

|fn(x)− f(x)| dx. (2)

Since fn ⇒ f on every compact interval, there exists Nε so that sup[ 1
m ,m] |fn(x)− f(x)| < ε

3 for all

n > Nε. Then, for all n > Nε, pick m > Mε as above, then the right hand side of (2) is less than ε
and we are done.

10. Rudin Chapter 7 Exercise 13

Solution: In this problem, we use the fact that a monotonic function can have at most countably
many discontinuities.

Since {fn(x)} are uniformly bounded, it is pointwise bounded and therefore {fn(x)} has a convergent
subsequence at every x ∈ Q∩ [0, 1]. Since this set is countable, there is a subsequence {fni}i of {fn}
that converges at every r ∈ Q∩ [0, 1] to, say f(r). We extend the domain of f to the entire [0, 1] by
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f(x) = sup
r≤x,rational

f(r).

We check that f is monotonically increasing. It is an increasing function on Q ∩ [0, 1]. Indeed, take
two rationals r < s. fni(r) ≤ fni(s) for all i and so are their limits as i → ∞. For any x < y,
take a rational number r ∈ (x, y). Then f(r) ≥ f(r′) for all rational numbers r′ ≤ x. Therefore,
f(y) ≥ f(r) ≥ supr′∈Q≤x f(r′) = f(x).

Next we prove that fni(x) → f(x) as i → ∞ for all x at which f is continuous. Let ε > 0, there
exists δ > 0 so that |t− x| < δ ⇒ |f(t)− f(x)| < ε

2 . Take two rational numbers r, s ∈ (x− δ, x+ δ)
so that r < x < s. Monotonicity of gi implies that

fni(r) ≤ fni(x) ≤ fni(s).

Since fni(r), fni(s)→ f(r), f(s) respectively, there is I ∈ N so that fni(s) ≤ f(s) + ε
2 and fni(r) ≤

f(r) + ε
2 for all i > I. Furthermore, since r, s ∈ (x − δ, x + δ), continuity of f implies that

f(s) ≤ f(x) + ε
2 and f(r) ≥ f(x)− ε

2 . Combining all the estimates, we have

f(x)− ε ≤ fni(x) ≤ f(x) + ε

for all i > I. Therefore, fni(x)→ f(x).

Finally, since f(x) is monotonic, there are at most countably many points of discontinuities. The
functions fni converge at each of those point, and therefore we may take a further subsequence
{fn′i}, which converges at every point of discontinuity. The subsequence of course still converge at
point of continuity of f , and the proof is completed.

11. Prove Theorem 7.17, with additional assumption that f ′n is continuous for all n.

Solution: Since each f ′n(x) is continuous, it is integrable and by the Fundamental Theorem of
Calculus, we have

fn(x) = fn(x0) +

∫ x

x0

f ′n(t) dt.

Then for all x ∈ [0, 1], we have

|fn(x)− fm(x)| ≤ |fn(x0)− fm(x0)|+
∫ x

x0

|f ′n(t)− f ′m(t)| dt.

Take ε > 0, since fn converge uniformly, it is uniformly Cauchy and there is N1 ∈ N so that
|f ′n(t) − f ′m(t)| < ε

2 for all t ∈ [0, 1] and n,m > N1. Since {fn(x0)} converges, there is N2 ∈ N so
that |fn(x0)− fm(x0)| < ε

2 for all n,m > N2. Take N = max(N1, N2), then |fn(x)− fm(x)| < ε for
all n,m > N , x ∈ [0, 1] and therefore {fn} is uniformly Cauchy and convergent.

Consider, for t 6= x,

φn(t) =
fn(t)− fn(x)

t− x
=

∫ t
x
f ′n(s) ds

t− x
.

Since f ′n uniformly converge to, say, g, we have
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φn(t)→
∫ t
x
g(s) ds

t− x

as n→∞. On the other hand, since fn ⇒ f , we have φn(t)→ f(t)−f(x)
t−x as n→∞ and therefore

f(t)− f(x)

t− x
=

∫ t
x
g(s) ds

t− x
.

Let G(t) =
∫ t
x
g(s) ds. Then G(x) = 0 and we have, by the Fundamental Theorem of Calculus,

lim
t→x

∫ t
x
g(s) ds

t− x
= lim
t→x

G(t)−G(x)

t− x
= G′(x) = g(x),

and therefore we have

lim
t→x

f(t)− f(x)

t− x
= g(x),

The left hand side is precisely the definition for f ′(x).
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