Name and Student ID's: _

Homework 1, Undergraduate Analysis 1

- 1. Fill in the gaps in the construction of the non-measurable space in class. (The equivalence relation, and the partition of [0, 1) into translations of N.)
- 2. Prove that any intersection of a family of σ -algebras is still a σ -algebra.
- 3. Rudin Chapter 11, Exercise 5.
- 4. Rudin Chapter 11, Exercise 6.
- 5. Given a set X, a family of subsets $\mathcal{R} \subset \mathcal{P}(X)$ is called a *ring* if it is closed under finite unions and complements:
 - $E, F \in \mathcal{R} \Rightarrow E \setminus F \in \mathcal{R}.$
 - $E_1, \ldots, E_n \in \mathcal{R} \Rightarrow \bigcup_{i=1}^n E_i \in \mathcal{R}.$

A ring is called σ -ring if is closed under countable union:

• $\{E_i\}_{i=1}^{\infty} \subset \mathcal{R} \Rightarrow \bigcup_{i=1}^{\infty} E_i \in \mathcal{R}.$

Prove that a σ -ring \mathcal{R} is a σ -algebra if and only if $X \in \mathcal{R}$.

- 6. Let \mathcal{M} be an infinite σ -algebra,
 - (a) Prove that \mathcal{M} has an infinite sequence of non-empty disjoint sets.
 - (b) Prove that \mathcal{M} is uncountable.
- 7. Prove that an algebra \mathcal{A} is a σ -algebra if it is closed under countable *increasing* unions:

If $\{E_i\}_{i=1}^{\infty} \subset \mathcal{A}$ and $E_i \subset E_{i+1}$ for all i, then $\bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$.