Name and Student ID's: _

Homework 2, Undergraduate Analysis

Refer to class notes for definitions of sets and functions in this homework assignment.

- 1. Prove that \mathcal{E} , the collection of elementary sets in \mathbb{R}^n , is *not* closed under countable union.
- 2. Verity the inequalities for the "distance function" $d(A, B) = \mu^*(S(A, B))$ defined in class.
- 3. Given $A \in \mathcal{M}(\mu)$, and $\epsilon > 0$, prove that there exists closed set $F \in \mathcal{M}(\mathcal{E})$, open set $G \in \mathcal{M}(\mathcal{E})$, such that $F \subset A \subset G$ and
 - $\mu(G) \le \mu(A) + \epsilon$
 - $\mu(F) \ge \mu(A) \epsilon$.
- 4. Let $\alpha : \mathbb{R} \to \mathbb{R}$ be monotonic.
 - (a) Prove that left or right limit always exists at every point $x \in \mathbb{R}$.
 - (b) Prove that the set function

$$\mu([a,b]) = \alpha(b^{+}) - \alpha(a^{+}),$$

$$\mu([a,b)) = \alpha(b^{-}) - \alpha(a^{+}),$$

$$\mu((a,b]) = \alpha(b^{+}) - \alpha(a^{-}),$$

$$\mu((a,b)) = \alpha(b^{-}) - \alpha(a^{-})$$

is regular. Here, $\alpha(x^-) = \lim_{t \to x^-} \alpha(t)$ and $\alpha(x^+) = \lim_{t \to x^+} \alpha(t)$.

- 5. Rudin Chapter 11, Exercise 3.
- 6. Rudin Chapter 11, Exercise 15.
- 7. Given a measure space (X, \mathcal{M}, μ) and $f : X \to \mathbb{R}$ such that $f^{-1}((r, \infty]) \in \mathcal{M}$ for all $r \in \mathbb{Q}$, prove that f is measurable.
- 8. Given a measure space (X, \mathcal{M}, μ) and $X = A \bigcup B$ with $A, B \in \mathcal{M}$, prove that a function f on X is measurable if and only if $f|_A$ and $f|_B$ are measurable on A and B, respectively.