Name and Student ID's: _

Homework 3, Undergraduate Analysis

Refer to class notes for definitions of sets and functions in this homework assignment. All functions and sets are measurable.

- 1. If $f \ge 0$ and $\int_E f \ d\mu = 0$, then f = 0 a.e. on E.
- 2. Prove the following basic properties for Lebesgue integrations:
 - (a) $f(x) \in [a, b]$ for all $x \in X$, $\mu(X) < \infty$, then

$$a\mu(X) \le \int_X f \ d\mu \le b\mu(X).$$

- (b) $f \leq g \Rightarrow \int_X f \ d\mu \leq \int_X g \ d\mu$.
- (c) $\forall c \in \mathbb{R}, \int_E cf \ d\mu = c \int_E f \ d\mu$.
- (d) $\int_E f d\mu = \int_X f K_E d\mu$.
- (e) $f \in \mathcal{L}(X) \Rightarrow f \in \mathcal{L}(E)$ for all measurable subset E of X.
- 3. Rudin Chapter 11, Exercise 8.
- 4. Rudin Chapter 11, Exercise 12.
- 5. Rudin Chapter 11, Exercise 11.
- 6. Rudin Chapter 11, Exercise 16.
- 7. If $f \ge 0$ integrable on X, then for all $\epsilon > 0$, there exists $E \in \mathcal{M}$ such that $\mu(E) < \infty$ and

$$\int_E f \ d\mu > \int_X f \ d\mu - \epsilon.$$