Name and Student ID's:

Homework 3, Undergraduate Analysis

Refer to class notes for definitions of sets and functions in this homework assignment. All functions and sets are measurable.

1. If $f \geq 0$ and $\int_{E} f d \mu=0$, then $f=0$ a.e. on E.
2. Prove the following basic properties for Lebesgue integrations:
(a) $f(x) \in[a, b]$ for all $x \in X, \mu(X)<\infty$, then

$$
a \mu(X) \leq \int_{X} f d \mu \leq b \mu(X)
$$

(b) $f \leq g \Rightarrow \int_{X} f d \mu \leq \int_{X} g d \mu$.
(c) $\forall c \in \mathbb{R}, \int_{E} c f d \mu=c \int_{E} f d \mu$.
(d) $\int_{E} f d \mu=\int_{X} f K_{E} d \mu$.
(e) $f \in \mathcal{L}(X) \Rightarrow f \in \mathcal{L}(E)$ for all measurable subset E of X.
3. Rudin Chapter 11, Exercise 8.
4. Rudin Chapter 11, Exercise 12.
5. Rudin Chapter 11, Exercise 11.
6. Rudin Chapter 11, Exercise 16.
7. If $f \geq 0$ integrable on X, then for all $\epsilon>0$, there exists $E \in \mathcal{M}$ such that $\mu(E)<\infty$ and

$$
\int_{E} f d \mu>\int_{X} f d \mu-\epsilon
$$

