Name and Student ID's:

Homework 4, Undergraduate Analysis

Refer to class notes for notions used in this homework. \mathcal{H} will be used to denote a Hilbert space and $\|\cdot\|$ is the norm induced by inner product $\langle\cdot, \cdot\rangle$. The metric on \mathcal{H} is given by this norm.

1. Prove that

$$
\|\cdot\|: \mathcal{H} \rightarrow K
$$

is continuous.
2. Given two Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2}, define product norm on $\mathcal{H}_{1} \times \mathcal{H}_{2}$ by

$$
\left\|\left(x_{1}, x_{2}\right)\right\|=\max \left(\left\|x_{1}\right\|_{\mathcal{H}_{1}},\left\|x_{2}\right\|_{\mathcal{H}_{2}}\right)
$$

(a) Prove that this norm is equivalent to

$$
\left\|\left(x_{1}, x_{2}\right)\right\|^{\prime}=\sqrt{\left\|x_{1}\right\|_{\mathcal{H}_{1}}^{2}+\left\|x_{2}\right\|_{\mathcal{H}_{2}}^{2}} .
$$

(b) Prove that vector space addition

$$
+: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}
$$

is continuous with respect to product norm.
(c) Prove the scalor multiplication

$$
\cdot: K \times \mathcal{H} \rightarrow \mathcal{H}
$$

is continuous with respect to product norm.
3. Prove the continuity of inner product: If $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ then $<x_{n} \cdot y_{n}>\rightarrow<x, y>$.
4. Prove the parallelogram law stated in class.
5. Prove the Pythagorean's Theorem stated in class.
6. Let $E \subset \mathcal{H}$. Prove that $\left(E^{\perp}\right)^{\perp}$ is the smallest closed subspace containing E. That is, if F is a closed subspace containing E, then $\left(E^{\perp}\right)^{\perp} \subset F$.
7. Here we study a vector space not isomorphic to its dual. Define

$$
E=\mathbb{R}^{(\mathbb{N})}:=\left\{\left\{a_{i}\right\}_{i=1}^{\infty} \mid a_{i} \in \mathbb{R} \text { and } \exists N \text { such that } a_{i}=0 \forall i>N\right\}
$$

and

$$
V=\mathbb{R}^{\mathbb{N}}:=\left\{\left\{a_{i}\right\}_{i=1}^{\infty} \mid a_{i} \in \mathbb{R}\right\}
$$

Clearly, the set $\left\{e_{i}\right\}_{i=1}^{\infty}$, where e_{i} is the sequence with $a_{i}=1$ and $a_{j}=0 \forall j \neq i$ is a basis for E.
(a) Prove that E is not isomorphic to V.
(b) Prove that V is isomorphic to E^{*} and conclude that E is not isomorphic to E^{*}. 8. Prove that for any $A \neq \emptyset, l^{2}(A)$ is complete.

