Name and Student ID's: _

Homework 4, Undergraduate Analysis

Refer to class notes for notions used in this homework. \mathcal{H} will be used to denote a Hilbert space and $\|\cdot\|$ is the norm induced by inner product $\langle \cdot, \cdot \rangle$. The metric on \mathcal{H} is given by this norm.

1. Prove that

 $\|\cdot\|:\mathcal{H}\to K$

is continuous.

2. Given two Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 , define product norm on $\mathcal{H}_1 \times \mathcal{H}_2$ by

$$|(x_1, x_2)|| = \max(||x_1||_{\mathcal{H}_1}, ||x_2||_{\mathcal{H}_2}).$$

(a) Prove that this norm is equivalent to

$$||(x_1, x_2)||' = \sqrt{||x_1||^2_{\mathcal{H}_1} + ||x_2||^2_{\mathcal{H}_2}}.$$

(b) Prove that vector space addition

$$+:\mathcal{H}\times\mathcal{H}\rightarrow\mathcal{H}$$

is continuous with respect to product norm.

(c) Prove the scalor multiplication

$$\cdot: K \times \mathcal{H} \to \mathcal{H}$$

is continuous with respect to product norm.

- 3. Prove the continuity of inner product: If $x_n \to x$ and $y_n \to y$ then $\langle x_n, y_n \rangle \to \langle x, y \rangle$.
- 4. Prove the parallelogram law stated in class.
- 5. Prove the Pythagorean's Theorem stated in class.
- 6. Let $E \subset \mathcal{H}$. Prove that $(E^{\perp})^{\perp}$ is the smallest closed subspace containing E. That is, if F is a closed subspace containing E, then $(E^{\perp})^{\perp} \subset F$.

7. Here we study a vector space *not* isomorphic to its dual. Define

$$E = \mathbb{R}^{(\mathbb{N})} := \{\{a_i\}_{i=1}^{\infty} \mid a_i \in \mathbb{R} \text{ and } \exists N \text{ such that } a_i = 0 \forall i > N\}$$

and

$$V = \mathbb{R}^{\mathbb{N}} := \{ \{a_i\}_{i=1}^{\infty} \mid a_i \in \mathbb{R} \}.$$

Clearly, the set $\{e_i\}_{i=1}^{\infty}$, where e_i is the sequence with $a_i = 1$ and $a_j = 0 \ \forall j \neq i$ is a basis for E.

- (a) Prove that E is *not* isomorphic to V.
- (b) Prove that V is isomorphic to E^* and conclude that E is not isomorphic to E^* .
- 8. Prove that for any $A \neq \emptyset$, $l^2(A)$ is complete.