Differential Geometry: Final Exam Problem List

1. The space of n matrices, $Mat(n, \mathbb{R})$, is a vector space of dimension n^2 and therefore a smooth manifold. Let $GL(n, \mathbb{R})$ be the subset of invertible $n \times n$ matrices, and $O(n, \mathbb{R})$ be the set of orthogonal matrices:

 $O(n,\mathbb{R}) := \{ A \in Mat(n,\mathbb{R}) \mid AA^T = Id \}.$

- (a) Prove that $GL(n, \mathbb{R})$ is a smooth manifold. What is its dimension?
- (b) Prove that $O(2, \mathbb{R})$ is a smooth manifold. What is its dimension?
- 2. Given a closed 1-form ω on a smooth manifold M,
 - (a) prove that if M is simply connected, γ_1 and γ_2 be two paths starting and ending at the same points, then

$$\int_{\gamma_1} \omega = \int_{\gamma_2} \omega$$

- (b) show the conclusion of part (a) is false if M is not simply connected.
- 3. Let M be a compact manifold, N a connected manifold, and $F: M \to N$ is smooth.
 - (a) Prove that F is a closed map.
 - (b) Prove that if F is a submersion, then N must also be compact.
- 4. Prove that $T\mathbb{S}^1$ is trivial.
- 5. Show that every manifold M admits a smooth embedding into some Euclidean space.
- 6. Let $U = (0, \pi) \times (0, 2\pi)$ and $f : \mathbb{R}^2 \to \mathbb{R}^3$ be given by

 $f(u, v) = (\sin u \cos v, \sin u \sin v, \cos u).$

Compute $\int_U f^* \omega$ for

$$\omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy.$$

7. Let

$$\alpha = (3x^2 \cos y + e^{xy}) \ dx \wedge dy + 17x^3 dx \wedge dz + 3 \left(x + yz^7 + \cos z\right) \ dy \wedge dz$$

be a two form on \mathbb{R}^3 . Compute

$$\int_{\mathbb{S}^2} \alpha$$

where \mathbb{S}^2 is given by standard orientation determined by outward normal vector.

8. Let M be a compact, oriented and connected manifold with boundary. Let $\iota : \partial M \to M$ be inclusion, α and β be k form and n-k-1 form on M, respectively. Moreover assume that $\iota^*\beta = 0$. Prove that

$$\int_M d\alpha \wedge \beta = (-1)^{k+1} \int_M \alpha \wedge d\beta.$$

9.

10.