
LECTURE 2 - Definitions and Examples of

Smooth Manifolds

September 26, 2019

After learning the hopelessly abstract definitions of topological spaces, we
study a certain kind of spaces that we can ”do some interesting math” on
them. To ”do some math”, we need to be able to, at least locally, identify
the topological space with a field homeomorphically. A simple word for this
identification is ”coordinate”. To do some interesting math, we need to, in
addition, tell what is ”smooth”. In another words, we want to do some calculus
on our topological space. For this purpose, the coordinates should be identified
with spaces at least as complete as Rn. Moreover, the local identification must
agree on overlaps so we have an unambiguous definition for smooth maps.

1 Topological Manifolds

We start with the primitive definitions of topological manifolds. All examples
below are Hausdorff and second countable and we leave the readers to check
those technical details.

Definition 1.1. A real topological manifold of dimension n is a topological
space M that is Hausdorff, second countable and locally Euclidiean. That is,
for each p ∈M , there is a pair (U,ϕ) so that

•

•

You may check that it loses no generality to assume that Ũ is an open ball
in Rn. The pair (U,ϕ) is called a coordinate chart around p. The coordinate is
usually denoted by

ϕ(p) = (x1(p), . . . , xn(p)).

The coordinate representation for p is certainly not unique. It is possible for
p to lie in two coordinate charts (U,ϕ) and (V, ψ). The intersection U ∩ V is
mapped homeomorphically to two open sets ϕ(U∩V ) ⊂ Ũ and ψ(U∩V ) ⊂ Ṽ by
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ϕ and ψ. These two open sets are clearly homeomorphic via the homeomorphism
ψ ◦ ϕ−1 restricting on ϕ(U ∩ V ).

The restriction of the map ψ ◦ϕ−1 is called the transition map, and we conclude
that every point on M has a well defined coordinate in Rn up to homeomor-
phism.

We introduce several basic examples of topological manifolds. Some are
visually obvious (even trivial). Some are more abstract.

Example 1.2. M = Rn with a single coordinate chart (U,ϕ) = (Rn, Id) is
trivially a topological manifold.

Example 1.3 (Graph of Continuous Functions). Let U ⊂ Rn be open and
F : U → Rk be a continuous map. The graph of F

Gr(F ) := {(x, F (x))} ⊂ Rn × Rk

with subspace topology is a topological manifold of dimension n. It is again
covered by one coordinate chart U = Gr(F ) with homeomorphism ϕ : Gr(F )→
U given by ϕ(x, F (x)) = x. This map is clearly bijective and continuous since it
is the restriction of projection map π1(x, y) = x to Gr(F ). Its inverse, ϕ−1(x) =
(x, F (x)) is also continuous since all components are.

Example 1.4 (Spheres). The unit n-sphere

Sn := {x ∈ Rn+1 | ‖x‖ = 1}

with subspace topology is a topological manifold. It is covered by 2n+2 coordinate
charts

U+
i := {(x1, . . . , xn+1) | xi > 0}

and

U−i := {(x1, . . . , xn+1) | xi < 0}

for i = 1, . . . , n+ 1. It is clear that each U+
i is the graph of continuous map
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xi =

√√√√1−
n+1∑

j=1,j 6=i

(xj)2

and U−i is the graph of continuous map

xi = −

√√√√1−
n+1∑

j=1,j 6=i

(xj)2.

The coordinate map is then simply

ϕ±i (x1, . . . , xn+1) = (x1, . . . , x̂i, . . . , xn+1).

The next example is more abstract, but extremely important.

Example 1.5 (Real Projective Space). The real projective space is the space
of 1-dimensional subspace, or lines through origin, in Rn+1. Precisely, consider
Rn+1\{0} and define equivalence relation x ∼ y ⇐⇒ x = λy for some λ 6= 0.
(Check the equivalence). We define the real projective space to be

RPn := Rn+1\{0}/ ∼

with quotient topology. We denote the equivalence class with representative
(x1, . . . , xn+1) by [x1 : . . . : xn+1]. Clearly, [x1 : . . . : xn+1] = [λx1 : . . . : λxn+1]
for all λ 6= 0, and the representation is known as homogeneous coordinate.

Let π : Rn+1\{0} → RPn be the quotient map, Ũi be the subset of Rn with
xi 6= 0, and Ui = π(Ũi). These subsets are open in RPn+1 (check it). Each Ui
is a local coordinate chart with coordinate map

ϕi([x
1 : . . . : xn+1]) =

(
x1

xi
, . . . ,

x̂i

xi
, . . . ,

xn+1

xi

)
.

Readers may check that this map is well-defined, continuous (since ϕi ◦ π is),
with continuous inverse

ϕ−1i (u1, . . . , un) = [u1 : . . . : ui−1 : 1 : ui : . . . : un].

These coordinate charts (Ui, ϕi), for i = 1 . . . , n+1, form an open cover of RPn
and equip it with a structure of topological manifold.

Let’s try to visualize this space for n = 3 and justify its name.
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2 Smooth Manifolds

We now raise our standard and discuss manifolds that look ”smooth and curvy”.
Such spaces allow us to do usual things we do in calculus at least locally, such
as tangent lines, tangent planes, and computing curvatures, ...etc. Let’s first
recall (or agree on) some definitions from advanced calculus.

Definition 2.1. Given an open set U ⊂ Rn, a map F : U → Rm is smooth, or
C∞, if partial derivatives exist to any order and are continuous. For V ⊂ Rm,
F : U → V is called a diffeomorphism if is bijective with smooth inverse.

A diffeomorphism is clearly a homeomorphism. Moreover, it preserves smooth
functions on U or V : any smooth function f : V → R (or U → R) gives rise
to a smooth function on U (or on V ) by composing with F (or F−1). In short,
a diffeomorphism preserves the smooth structure of two spaces, and this is the
additional requirement we are imposing on smooth manifold.

Let’s define smooth structure on topological manifolds. A smooth structure
is a rule to determine how derivatives are taken and what functions are smooth.
Since every p ∈M has a neighborhood U that can be identified with an open set
Ũ ⊂ Rn via homeomorphism ϕ, it is natural to define derivative of a function
f at p to be derivative of fU := f ◦ ϕ−1 : Ũ → R (called the coordinate
representation of f on U), and say f smooth at p if fU is. The ambiguity,
however, arises on overlaps of coordinate charts. If (U,ϕ) and (V, ψ) are both
coordinate charts near p, there will be two identifications with open sets in
Rn and therefore two rules of differentiation: fU and fV . They are related by
transition maps ψ ◦ ϕ−1, which does not necessarily preserve smoothness:

Example 2.2. ϕ : R2 → R2 given by ϕ(u, v) = (u
1
3 , v

1
3 ) is a homeomorphism.

f : R2 → R given by f(x, y) = x is clearly smooth, but f ◦ ϕ(u, v) = u
1
3 is not

smooth at (0, 0).

Defining smoothness as above near p evidently depends on the choice of coordi-
nate, which does not fit well with our intuition. The dependence is eliminated
if we require in addition the transition maps between any two coordinate charts
to be diffeomorphism. Two coordinate charts are called smoothly compatible if
the transition map between them is diffomorphism in Rn. A smooth atlas is a
collection of smoothly compatible charts that cover M , and

Definition 2.3 (Smooth Manifold). A smooth manifold M is a topological
manifold with a smooth atlas.

With a smooth atlas, we can now define smooth functions on M .

Definition 2.4 (Smooth Function). Given a smooth manifold M and f : M →
R, f is smooth at p if for some coordinate chart U of p, fU : Ũ → R is smooth
in the usual sense. f is smooth on M , or f ∈ C∞(M) if it is smooth at every
p ∈M .
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Of course a manifold may very well have more than one smooth atlas. Two
atlas are equivalent if they define the same smooth functions. That is, a function
is smooth in one atlas if and only if it is smooth in another. We may combine
all equivalent atlas and define a maximal atlas for that structure. A smooth
structure is then a maximal smooth atlas. Some topological manifolds have
unique smooth structure (up to equivalence), some might have many, and some
might have none. They are all very interesting problems to study, but we will
not go into further details.

Let’s check that Example 1.2 - 1.5 are all smooth manifolds. The first two
examples require no work since the chart is global and there is no transition map.
For the sphere in Example 1.4, one can readily compute that the transition maps
on U±i ∩ U

±
j . For i < j, we have

ϕ±i ◦ (ϕ±j )−1(u1, . . . , un) = (u1, . . . , ûi, . . . ,±
√

1− ‖u‖2, . . . , un)

and similar expressions hold for i > j (just switch the hat and square root). For
i = j, the transition maps are identities. On U±i ∩ U

±
j , it is clear that ‖u‖ < 1

and the map above is a diffemorphisms on their domains and ranges.
For the real projective space in Example 1.5, the transition maps on Ui ∩Uj

are

ϕi ◦ ϕ−1j (u1, . . . , un) =

(
u1

uj
, . . . ,

uj−1

uj
,
uj+1

uj
, . . . ,

ui−1

uj
, 1,

ui

uj
, . . . ,

un

uj

)
which are diffeomorphisms on their domains and ranges since the denominator
is never 0.

We give a few more examples of smooth manifolds.

Example 2.5 (Finite Dimensional Vector Spaces). Given a finite dimensional
real vector space V , we may define a norm and therefore a topology on it. Re-
call that being finite dimensional, all norms are equivalent and therefore the
topology is independent of the choice of norm. Let {vi}ni=1 be a basis of V . The
space V is homeomorphic with Rn via homeomorphism ϕ(x) = ϕ

(∑n
i=1 x

ivi
)

:=
(x1, . . . , xn). The single chart (E,ϕ) then defines a single coordinate chart and
a smooth structure. One can readily check that this smooth structure is inde-
pendent of choice of basis since a different basis amounts to a change of basis
matrix, which is a linear and invertible map on Rn and therefore diffeomorphic.

Example 2.6 (Matrices). By previous example, the space Mat(m × n,R) of
all real m × n matrices is a smooth manifold since it is a real vector space of
dimension nm.

Example 2.7 (Open Submanifolds). Given a smooth manifold M and an open
subset U ⊂M , U then has a smooth atlas given by

{(W ∩ U,ϕW |U ) | (W,ϕW ) smooth chart for M}.
Therefore any open subset of a smooth manifold is also a smooth manifold.
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Example 2.8 (General Linear Group). By the previous two examples, the open
subset

GL(n,R) = {A ∈Mat(m× n,R) | A invertible }
is a smooth manifold. Moreover, it is a group under matrix multiplication.

Multiplication and inverse operations are also smooth with respect to its smooth
structure. This is an example of Lie group.

Example 2.9 (Implicitly Defined Submanifolds). Consider a smooth map F :
Rn+m → Rm, written as F (x, y) for x ∈ Rn, y ∈ Rm, with F−1(0) 6= ∅. The
derivative of F is written as

DF(u,v) = (DFx | DFy) |(u,v)
where DFx consists of partial derivatives with respect to first n variables and
DFy with respect to the remaining m. DFy is a linear operator on Rm. If DFy
is invertible on F−1(0), then F−1(0) is an n-dimensional submanifold of Rn+m.

Indeed, by the Implicit Function Theorem, F−1(0) is covered by open subsets
{Uα} and for every α, there exists a unique smooth map gα : Uα → Rm so
that Uα = {(x, gα(x))}. Therefore, Uα is a coordinate chart with coordinate
map ϕα(x, y) = x. It is then clear that transition maps on two overlapping
coordinate charts are identities, and therefore F−1(0) is a smooth manifold.

3 Manifolds with Boundary

At this point we have been working with manifolds without boundary, on which
every point is an interior point. The model space at each point is an open ball in
Rn, or the entire Rn. These spaces are at least insufficient for the formulation
of the fundamental theorem of calculus, which relates the integral over a space
to another integral over the boundary.

The model space for a manifold with boundary is the closed upper half plane

Hn := {(x1, . . . , xn) | xn ≥ 0}.

An n-dimensional topological manifold with boundary is a second countable,
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Hausdorff topological space in which every point p ∈ M has a neighborhood
(cahrt) that is either homeomorphic to an open subset of Rn, or a relative open
subset in Hn (that is, U∩Hn, where U open in Rn. Points of first type are called
an interior point, or p ∈ Int M , and the corresponding chart (U,ϕ) is called
an interior chart. Those of second type are called boundary points, or p ∈ ∂M
with boundary chart (U,ϕ). It is intuitively clear, although not straightforward
to prove that a point is exactly one of the two types:

Theorem 3.1. M is the disjoint union of IntM and ∂M .

We remind the readers that ∂M is in general not the same as the actual topo-
logical boundary of M . See textbook for clarifications.

Next we construct smooth structure on manifolds with boundary. First, we
recall the definition of smooth maps on arbitrary subsets A ⊂ Rn:

Definition 3.2. Given A ⊂ Rn, a map F : A → Rk is smooth if there is an
open subset U ⊂ Rn that contains A, and a smooth map F̃ : U → Rk so that
F̃ |A = F .

It basically says that smooth maps on an arbitrary subset are those extendable to
a smooth maps defined on a larger open subset. The definition defines smooth
functions, and therefore diffeomorphisms, on Hn. A smooth structure for a
manifold M with boundary is then identical to smooth structure for M without
boundary, except that diffeomorphic transition maps are between subsets in Hn.
This defines a smooth manifold with boundary.

We conclude this section with a special case of Theorem 3.1:

Theorem 3.3. Suppose M is a smooth manifold with boundary and p ∈M . If
there is a smooth chart (U,ϕ) containing p such that ϕ(U) ⊂ Hn and ϕ(p) ∈ Hn,
then the same is true for any other smooth chart containing p.
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