Name and Student ID's: $\qquad$

## Homework 4, Advanced Calculus 1

1. Consider the set

$$
X:=\{f:[0,1] \rightarrow \mathbb{R} \mid f \text { continuous }\} .
$$

Prove that the following two functions are metrics on $X$ :
(a)

$$
d(f, g)=\sup _{x \in[0,1]}\{|f(x)-g(x)|\} .
$$

(b)

$$
d(f, g)=\left(\int_{0}^{1}|f-g|^{p} d x\right)^{\frac{1}{p}}, \text { for } p \in[1, \infty)
$$

2. All the definitions defined on $\mathbb{R}^{n}$ are defined identically on a metric space $(X, d)$. For boundedness, a metric space $(X, d)$, a subset $E \subset X$ is bounded if it is contained in some ball. With these, prove that a discrete metric space $(X, d)$ (with $d(x, y)=0$ if $x=y$ and $d(x, y)=1$ if $x \neq y)$ with more than 1 element is bounded and disconnected. For any subset $E$ of $X$, what is $\bar{E}$ and $\operatorname{int}(E)$ ?
3. Let $d_{1}$ and $d_{2}$ be two metrics on a set $X$ such that for some $\alpha, \beta>0$,

$$
\alpha d_{1}(x, y) \leq d_{2}(x, y) \leq \beta d_{1}(x, y)
$$

for all $x, y \in X$. Prove that a subset $E \subset X$ is open with respect to $d_{1}$ if and only if it is open with respect to $d_{2}$. That is, $d_{1}$ and $d_{2}$ determine the same open subsets. (Such metrics are called strongly equivalent and the conditions to be proved are called topologically equivalent.)
4. Bartle, Section 14 (pp. 97-98) Exercise B.
5. Bartle, Section 14 (pp. 97-98) Exercise F.
6. Bartle, Section 14 (pp. 97-98) Exercise I.
7. Bartle, Section 14 (pp. 97-98) Exercise J.
8. Bartle, Section 14 (pp. 97-98) Exercise L.

