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Abstract. In this paper, we give an algebraic construction of the solution to
the following mean field equation:

Δψ + eψ = 4π

2g+2∑

i=1

δPi

on a genus g ≥ 2 hyperelliptic curve (X, ds2), where ds2 is a canonical metric
on X and {P1, · · · , P2g+2} is the set of Weierstrass points on X.

1. Introduction

Let f(x) be a complex polynomial in x with 2g + 2 distinct complex roots
{e1, · · · , e2g+2}. The affine plane curve C0 = {(x, y) ∈ C2 : y2 = f(x)} de-
fines a noncompact Riemann surface with respect to the complex analytic topol-
ogy on C2. To compactifiy C0 in the category of Riemann surfaces, we intro-
duce another smooth affine plane curve C ′

0. Let g(z) be the complex polynomial

g(z) =
∏2g+2

i=1 (1−eiz) and C ′
0 be the smooth affine plane curve defined by w2 = g(z),

i.e., C ′
0 = {(z, w) ∈ C2 : w2 = g(z)}. Let U0 be the open subset of C0 consisting

of points (x, y) so that x �= 0 and U ′
0 be the open subset of C ′

0 consisting of points
(z, w) such that z �= 0. The map ϕ : U0 → U ′

0 defined by ϕ(x, y) = (1/x, y/xg+1)
is an isomorphism of Riemann surfaces. It is well known that the gluing C0 ∪ϕ C ′

0

of C0 and C ′
0 along ϕ is a connected compact Riemann surface of genus g; see [3]

or [4]. The compact Riemann surface C0 ∪ϕ C ′
0 is called the hyperelliptic curve of

genus g defined by y2 = f(x) and is denoted by X in this paper. The holomorphic
map π : X → P1 defined by

π(P ) =

{
(x(P ) : 1) if P ∈ C0,

(1 : z(P )) if P ∈ C ′
0,

is a degree two ramified covering map of P1, where (z0 : z1) is the homogeneous
coordinate on P1. The Weierstrass points of X are the 2g + 2 ramification points
{P1, · · · , P2g+2} of π such that (x(Pk), y(Pk)) = (ek, 0) for 1 ≤ k ≤ 2g + 2.

The space H0(X,Ω1
X) of holomorphic one forms on X has a simple basis of the

form {xi−1dx/y : 1 ≤ i ≤ g} and the integral homology group H1(X) of X has a
(symplectic) Z-basis {ai, bj : 1 ≤ i, j ≤ g} such that

∫
aj

ωi = δij for 1 ≤ i, j ≤ g.

Denote τij =
∫
bj
ωi for 1 ≤ i, j ≤ g and let τ be the complex g× g matrix [τij ]

g
i,j=1.
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Then τ is a symmetric matrix with a positive definite imaginary part. Let Λτ be
the lattice in Cg generated by the column vectors of the g × 2g matrix Ω = [Ig, τ ].
Let Ωi be the i-th column vector of Ω and let {dx1, · · · , dx2g} be the real basis dual
to {Ωi : 1 ≤ i ≤ 2g}. The complex torus Jac(X) = Cg/Λτ together with the class
[ω], where ω =

∑g
i=1 dxi ∧ dxg+i is a principally polarized abelian variety called

the Jacobian variety of X. Fixing a point P0 on X, we define a holomorphic map

μ : X → Jac(X), μ(P ) =

(∫ P

P0

dx

y
, · · · ,

∫ P

P0

xg−1dx

y

)
mod Λ.

Let (z1, · · · , zg) be the standard holomorphic coordinate on Jac(X) and let ds̃2H be
the flat hermitian metric

∑g
i,j=1 hijdz

i ⊗ dzj on Jac(X), where H = [hij ] is a g× g

positive definite hermitian matrix. The canonical metric ds2H on X is defined by
ds2H = μ∗ds̃2H and has the form

ds2H =
1

|y2|

g∑
i,j=1

hijx
i−1xj−1.

Let ΔH be the Laplace operator associated with the metric ds2H . In this paper, we
study the following mean field equation:

(1.1) ΔHψ + eψ = 4π

2g+2∑
i=1

δPi
,

where {P1, · · · , P2g+2} is the set of all Weierstrass points on X and δP : C∞(X) →
C is the Dirac measure centered at P for P ∈ X.

In [2], we discovered that whenX has genus two, the Gaussian curvature function
K of a canonical metric determines a solution ψ to (1.1). This paper is a contin-
uation of [2]; we give an algebraic construction of a solution to (1.1) involving the
study of solutions to the formal nonlinear ordinary differential equation

(1.2) (tQ′′(t) +Q′(t))Q(t)− t(Q′(t))2 = S(t)Q(t),

and the study of solutions to the formal nonlinear partial differential equation

(1.3) u
∂2u

∂x∂y
− ∂u

∂x

∂u

∂y
= σu.

Here S(t) is a complex formal power series and σ is a complex polynomial in x, y.
We call S the data for (1.2) and σ the data for (1.3), respectively. In Section 2, we
define a sequence of polynomials to solve (1.2) and give a necessary and sufficient
condition for (1.2) possesing a polynomial solution. In Section 3, we show that the
existence of solutions to (1.3) is equivalent to the nonemptiness of a certain (ind)
affine algebraic set. Solutions to (1.2) would allow us to construct solutions to (1.3)
for a certain type of polynomials σ. In Section 4, using the method developed in
Section 2 and Section 3, we give a construction of a solution to (1.1) and the closed
form of a solution to (1.1) when H is a diagonal matrix with positive diagonals. In
Section 5, we introduce a real positive parameter γ into (1.1) and generalize the
solutions constructed in previous sections. The parameter arises from a rescaling
of a canonical metric by γ and we discuss the adiabatic limit of solutions as γ → 0.
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2. A formal nonlinear ordinary differential equation

Let {λi : i ≥ 0} be an infinite sequence of variables and K[Λ] be the ring of
polynomials in {λi : i ≥ 0} over a field K. We define a sequence of polynomials
{f i

λ : i ≥ 1} in Q[Λ][t] by f1
λ(t) = λ0 and

(2.1)

fk+1
λ (t) =

λk

(k + 1)2
+

t

(k + 1)2

k−1∑
i=0

(λi − (i+ 1)(2i+ 1− k)f i+1
λ (t))fk−i

λ (t), k ≥ 2.

By definition,

f2
λ(t) =

λ2
0t+ λ1

4
, f3

λ(t) =
λ0λ1t+ λ2

9
, f4

λ(t) = −λ2
0λ1t

2+(3λ2
1 +8λ0λ2)t+

λ3

16
.

By induction, the degree of f i
λ(t) in t is i − 2 for i ≥ 3 and the t0 term of f i

λ(t) is
λi−1/(i− 1)2 for i ≥ 2. Let us denote f i

λ by

f i
λ(t) =

i−2∑
j=0

βij(λ)t
j , βij(λ) ∈ Q[Λ].

If S(t) =
∑∞

i=0 sit
i is a complex formal power series, we set f1

S(t) = s0 and

f i
S(t) =

i−2∑
j=0

βij(s0, s1, · · · )tj .

Notice that when S(t) is a polynomial of degree at most n, then f i
S(t) is divisible

by t for all i ≥ n+ 2.

Lemma 2.1. Let f(t) and g(t) be complex power series such that g(0) �= 0 and
f(t)g(t) is divisible by tm for some m ≥ 1. Then f(t) is divisible by tm.

Proof. We assume that f(t)g(t) = tmh(t) for some h(t) ∈ C[[t]]. Then f(0) = 0.
Taking the (formal) derivatives of the equation f(t)g(t) = tmh(t) with respect to
t and using the fact that g(0) �= 0, we prove by induction that f (i)(0) = 0 for
1 ≤ i ≤ m− 1. This implies that f(t) = tmf1(t) with f1 ∈ C[[t]]. �

Assume that Q(t) is a solution to (1.2) and Q(t) is divisible by tm but not by
tm+1. Define Q1(t) ∈ C[[t]] such that Q(t) = tmQ1(t). (Q1(t) is defined since C[[t]]
is a unique factorization domain.) Then Q1(0) �= 0. By an elementary computation,

tm
(
(tQ′′

1(t) +Q′
1(t)Q1(t))− t(Q′

1(t))
2
)
= S(t)Q1(t).

By Lemma 2.1, S(t) is divisible by tm. Define S1(t) by S(t) = tmS1(t). Then

(tQ′′
1(t) +Q′

1(t)Q1(t))− t(Q′
1(t))

2 = S1(t)Q1(t).

This shows that Q1(t) is a solution to (1.2) with the data S1(t) and with the initial
condition Q1(0) �= 0. Owing to this observation, it suffices to consider the solutions
Q(t) to (1.2) for a given data S(t) under the assumption Q(0) �= 0.

Proposition 2.2. Let S(t) =
∑∞

i=0 sit
i be a complex formal power series and let

a be a nonzero complex number. A formal power series Q(t) =
∑∞

i=1 qit
i with

Q(0) = 1/a solves (1.2) for the data S(t) if and only if qi = f i
S(a) for i ≥ 1.
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Proof. After some basic computation, we know

(tQ′′(t) +Q′(t))Q(t)− t(Q′(t))2 =
∞∑
k=0

(
k∑

i=0

(i+ 1)(2i+ 1− k)qi+1qk−i

)
tk,

S(t)Q(t) =

∞∑
k=0

(
k∑

i=0

siqk−i

)
tk.

If Q(t) is a solution to (1.2), then

(2.2)
k∑

i=0

(i+ 1)(2i+ 1− k)qi+1qk−i =
k∑

i=0

siqk−i, k ≥ 0.

Hence q0q1 = q0s0. Since q0 �= 0, q1 = s0. Then q1 = f1
S(a) holds. Furthermore,

(2.2) can be rewritten as:

(2.3) (k + 1)2qk+1q0 = skq0 +
k−1∑
i=0

(si − (i+ 1)(2i+ 1− k)qi+1)qk−i, k ≥ 1,

which implies that (by q0 = 1/a)

qk+1 =
sk

(k + 1)2
+

a

(k + 1)2

k−1∑
i=0

(si − (i+ 1)(2i+ 1− k)qi+1)qk−i, k ≥ 1.

By (2.1) and induction, qk+1 = fk+1
S (a) for k ≥ 1. For the converse, since qi = f i

S(a),
(qi) satisfies (2.2). Define Q(t) =

∑∞
i=0 qit

i. By (2.2), Q(t) satisfies (1.2). We
complete the proof of our assertion. �

This proposition implies that the solution to (1.2) is uniquely determined by the
initial condition Q(0) = a with a �= 0 and the solution can be constructed by the
numbers f i

S(a) for i ≥ 1.
When S(t) is a polynomial of degree m, we would like to find the necessary and

the sufficient condition for (1.2) possessing polynomial solutions.

Lemma 2.3. Let S(t) be a polynomial of degree m. If the solution Q(t) to (1.2)
for the data S(t) is a polynomial of degree n in t, then n ≥ m+ 2.

Proof. The polynomial (tQ′′(t) +Q′(t))Q(t)− t(Q′(t))2 has degree at most 2n− 2
while the degree of S(t)Q(t) is n + m. Hence n + m ≤ 2n − 2 implies that n ≥
m+ 2. �

Proposition 2.4. Let S(t) be a polynomial of degree m. The solution Q(t) to (1.2)
for the data S(t) constructed in Proposition 2.2 is a polynomial in t if and only
if there exists N ∈ N with N ≥ m + 2 such that q−1

0 is the common root of the
polynomials {f i

S : N + 1 ≤ i ≤ 2N − 1}. Here q0 = Q(0).

Proof. Suppose that Q(t) =
∑∞

i=0 qit
i is a polynomial of degree n. Then qi = 0 for

all i ≥ n + 1. We choose N = n. By Lemma 2.3, N ≥ m + 2. Since qi = f i
S(q

−1
0 ),

q−1
0 is a root of f i

S for all i ≥ N + 1 and hence f i
S(q

−1
0 ) = 0 for all i ≥ N + 1.

Therefore, q−1
0 is a root of f i

S(t) for i ≥ N + 1 and thus for N + 1 ≤ i ≤ 2N − 1.

Let us prove the converse. Assume that q−1
0 is a common root of f i

S(t) for
N+1 ≤ i ≤ 2N−1. Let us prove the statement q2N−1+j = 0 for j ≥ 1 by induction
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on j. For j = 1,

q2N =
1

(2N)2q0

2N−2∑
i=0

(si − (i+ 1)(2N − 2i+ 2)qi+1)q2N−1−i.

For 0 ≤ i ≤ N−2, N+1 ≤ 2N−1−i ≤ 2N−1. Hence q2N−1−i = 0 for 0 ≤ i ≤ N−2.
For i ≥ N − 1, i ≥ m + 1 and hence si = 0 for i ≥ N − 1. For N ≤ i ≤ 2N − 2,
N +1 ≤ i+1 ≤ 2N −1. Hence qi+1 = 0 for N ≤ i ≤ 2N −2 by assumption. Notice
that when i = N − 1, 2i− 2N +2 = 0. We conclude that q2N = 0. This proves that
the statement holds for j = 1. We assume that the statement is true for 0 ≤ j ≤ l.
If j = l + 1, 2N − 1 + j ≥ N ≥ m+ 2 and hence s2N−1+j = 0 which implies that

q2N+l =
1

(2N + l)2q0

2N+l−2∑
i=0

(si − (i+ 1)(2i+ 1− k)qi+1)q2N+l−1−i.

For 0 ≤ i ≤ N − 1, N + 1 ≤ N + l < 2N − 1 + l− i ≤ 2N − 1 + l− i ≤ 2N − 1 + l.
By induction hypothesis and the assumption, we obtain that q2N−1+l−i = 0 for
0 ≤ i ≤ N − 1. For N ≤ i ≤ 2N + l − 2, N + 1 ≤ i + 1 ≤ 2N − 1 + l and hence
si = qi+1 = 0. We conclude that q2N+l = 0. We prove that q2N−1+j = 0 holds for
j = l + 1. By mathematical induction, q2N−1+j = 0 for all j ≥ 1. Combining with
the assumption, one has qi = 0 for all i ≥ N+1. Therefore, Q(t) is a polynomial. �

In fact, we can prove that:

Lemma 2.5. Let x0, · · · , xm be a set of formal variables for m ≥ 1. For each i,
define a polynomial over Q in x0, · · · , xm, t by

(2.4) F i(x0, · · · , xm, t) = f i
x0+x1t+···+xmtm(t),

where f i
S is the polynomial defined in (2.1). Let N be a natural number so that

N ≥ m + 2. The set of polynomials {F i : N + 1 ≤ i ≤ 2N − 1} is divisible by
G(x0, · · · , xg−1, t) ∈ Q[x0, · · · , xg−1, t] if and only if {F i : i ≥ N + 1} is divisible
by G.

Proof. The proof follows from the recursive relation

F k+1 =
t

(k + 1)2

k−1∑
i=0

(xi − (i+ 1)(2i+ 1− k)F i+1)F k−i, k ≥ m+ 1,

and is similar to that given in Proposition 2.4. We leave it to the readers. �

Corollary 2.6. Let S(t) be a complex polynomial of degree m and let Q(t) be a
solution to (1.2) for the data S(t) such that Q(0)−1 is a common zero of {f i

S :
m+ 3 ≤ i ≤ 2m+ 3}. Then Q(t) is a polynomial of degree m+ 2.

Proof. By assumption and Proposition 2.4, qi = 0 for i ≥ m + 3. Then Q(t) is a
polynomial of degree at most m+ 2. By Lemma 2.3, the degree of Q(t) is at least
m+ 2. We conclude that Q(t) is a polynomial of degree m+ 2. �

Lemma 2.7. For any i ≥ 1, and any S(t) ∈ C[[t]],

f i
λS(t) = λf i

S(λt)

for any λ ∈ C.
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Proof. When i = 1, the statement is obvious. One can also verify that the statement
is true for i = 2 and 3. Assume that the statement is true for i = k. For i = k + 1,
we use the recursive relation:

fk+1
λS (t) =

λsk
(k + 1)2

+
t

(k + 1)2

k−1∑
i=0

(λsi − (i+ 1)(2i+ 1− k)f i+1
λS (t))fk−i

λS (t)

=
λsk

(k + 1)2
+

t

(k + 1)2

k−1∑
i=0

(λsi − (i+ 1)(2i+ 1− k)λf i+1
S (λt))λfk−i

λS (λt)

= λ

(
sk

(k + 1)2
+

λt

(k + 1)2

k−1∑
i=0

(si − (i+ 1)(2i+ 1− k)f i+1
S (λt))fk−i

S (λt)

)
= λf i

S(λt).

�
This lemma implies that:

Corollary 2.8. Let S(t) be a complex polynomial of degree m. Then (1.2) has a
polynomial solution for data S(t) if and only if (1.2) has polynomial solution for
data λS(t) for λ ∈ C∗.

Given any complex polynomial B(t) =
∑n

i=0 bit
i, we define a new polynomial

B̃(t) by

B̃(t) = tdegBB(t−1)

and write B̃(t) =
∑n

i=0 b̃it
i, where n = degB(t). Then b̃i = bn−i for 0 ≤ i ≤ n.

Proposition 2.9. Let S(t) be a complex polynomial of degree m. Suppose that (1.2)

has a polynomial solution Q(t) of degree n for the data S(t). Then Q̃(t) solves (1.2)

for the data tn−m−2S̃(t).

Proof. One uses the chain rules to prove the statement while the calculation is
elementary. �

This proposition implies that

Corollary 2.10. Let S(t) be a complex polynomial of degree m. Suppose that (1.2)

has a polynomial solution Q(t) of degree m+ 2 for the data S(t). Then Q̃(t) solves

(1.2) for the data S̃(t).

3. A formal nonlinear partial differential equation

Let Mn(C) be the algebra of n×n complex matrices. For each n ≥ 1, we consider
the algebra monomorphism ψn,n+1 : Mn(C) → Mn+1(C) defined by

ψn,n+1(A) =

[
A 0
0 0

]
.

The direct limit of the directed system {(Mn(C), ψn,m)} is denoted by M∞(C),
where the algebra monomorphism ψn,m : Mn(C) → Mm(C) for n < m is defined
by

ψn,m = ψm,m−1 ◦ · · · ◦ ψn+1,n.

Denote the canonical map Mn(C) → M∞(C) by ψn and identify Mn(C) with its
image in M∞(C). Then M∞(C) can be realized as a union

⋃∞
n=1 Mn(C); M∞(C)

is an ind-variety over C.
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By an ind-variety over a field k, we mean that a set X together with a filtration
X0 ⊂ X1 ⊂ X2 ⊂ · · · such that

⋃
n≥0 Xn = X and each Xn is a finite dimensional

variety over k such that the inclusion Xn → Xn+1 is a closed embedding. An
ind-variety has a natural topology defined as follows. A subset U of X is said to
be open if and only if U ∩ Xn is open in Xn for each n ≥ 0. The ring of regular
functions on X denoted by k[X] is defined to be k[X] = lim←−n

k[Xn]. An ind-variety

is said to be projective, resp., affine, if each Xn is projective, resp., affine. For more
details about ind-varieties, see [5].

For each A ∈ M∞(C), we may write A = (aij)
∞
i,j=1 with aij = 0 for all but

finitely many i, j. We associate to A a complex polynomial p(A)(x, y) in x, y by

p(A)(x, y) =
∞∑

i,j=0

ai+1,j+1x
iyj .

We obtain a linear monomorphism p : M∞(C) → C[x, y]. The image of p is denoted
by P∞[x, y]. Given σ ∈ P∞[x, y], we would like to solve for the formal nonlinear
differential equation (1.3) in P∞[x, y]. To solve for (1.3) in P∞[x, y], let us assume
that

u(x, y) =
∞∑

α,β=0

aα+1,β+1x
αyβ and σ(x, y) =

∞∑
i,j=0

ci+1,j+1x
iyj .

By simple computation,

uuxy − uxuy =

∞∑
α,β=0

⎛⎝α+1∑
i=0

β+1∑
j=0

i(2j − β − 1)ai+1,j+1aα−i+2,β−j+2

⎞⎠xαyβ ,

σu =

∞∑
α,β=0

⎛⎝ α∑
i=0

β∑
j=0

ai+1,j+1cα−i+1,β−j+1

⎞⎠xαyβ .

Then u solves (1.3) if and only if

α+1∑
i=0

β+1∑
j=0

i(2j − β − 1)ai+1,j+1aα−i+2,β−j+2 =

α∑
i=0

β∑
j=0

ai+1,j+1cα−i+1,β−j+1

for any α, β ≥ 0. For each α, β, we define

ϕα,β
σ (A) =

α+1∑
i=0

β+1∑
j=0

i(2j−β−1)ai+1,j+1aα−i+2,β−j+2−
α∑

i=0

β∑
j=0

ai+1,j+1cα−i+1,β−j+1.

Then u = p(A) for some A ∈ M∞(C) solves (1.3) for data σ if and only if ϕα,β
σ (A) =

0 for all α, β, i.e., A satisfies a family of quadratic polynomials. The subset

Vσ = {A ∈ M∞(C) : ϕα,β
σ (A) = 0}

of M∞(C) is called the ind-affine algebraic variety associated with σ. The equation
(1.3) has a solution for σ if and only if Vσ is nonempty.

For each u ∈ P∞[x, y], we define Mxyu by

(Mxyu)(x, y) = (xy)u(x, y).

Then Mxy defines a linear endomorphism on P∞[x, y].
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Lemma 3.1. Suppose that u ∈ P∞[x, y] is a solution to (1.3) for data σ. Then
Mxyu is a solution to (1.3) for data Mxyσ.

Proof. Let v = Mxyu. Then v(x, y) = (xy)u(x, y). Hence vx = yu + (xy)ux, and
vy = xu+ (xy)uy, and vxy = u+ yuy + xux + (xy)uxy. We discover that

vvxy − vxvy = (xy)2(uuxy − uxuy) = (xy)2σu = (Mxyσ)v.

This proves our assertion. �

By making use of the fact that C[x, y] is a unique factorization domain, we prove
the following fact:

Proposition 3.2. Let v ∈ P∞[x, y] be a solution to (1.3) for a data σ ∈ P∞[x, y].
Assume that there exists m ∈ N such that v is divisible by (xy)m but not by xm+1ym

and not by xmym+1. Then σ is divisible by (xy)m. Furthermore, if u ∈ P∞[x, y]
and γ ∈ P∞[x, y] are polynomials so that v = Mm

xyu and σ = Mm
xyγ, then u is a

solution to (1.3) for the data γ.

Proof. Since v is divisible by (xy)m, we write v = Mm
xyu for some u ∈ P∞[x, y]. We

can show that

vvxy − vxvy = (xy)2m(uuxy − uxuy).

Since vvxy − vxvy = σv = (xy)mσu, we find

σu = (xy)m(uuxy − uxuy).

Since v is not divisible by xm+1ym and not by xmym+1, u is not divisible by x and
y. We see that σ is divisible by (xy)m. Let σ = Mm

xyγ for γ ∈ P∞[x, y]. Then

uuxy − uxuy = γu.

This proves our assertion. �

Definition 3.3. A solution u ∈ P∞[x, y] to (1.3) for a given data is called a prime
solution to (1.3) if u is not divisible by xy.

Let us denote the image of Mn(C) in C[x, y] via p by Pn[x, y]. Then P∞[x, y] =⋃
n≥1 Pn[x, y].

Lemma 3.4. Let σ ∈ Pm[x, y] with deg σ = 2m− 2. If u ∈ P∞[x, y] is a solution
to (1.3) for the data σ of degree 2n− 2, then n ≥ m+ 2.

Proof. We observe that the coefficients of x2n−3y2n−3 and of x2n−3y2n−4 and of
x2n−4y2n−3 in uuxy − uxuy all vanish. Then uuxy − uxuy is a polynomial of degree
at most 4n− 8. On the other hand, the degree of σu is 2n+ 2m− 4. We conclude
that n ≥ m+ 2. �

Let us write a remark that Vσ is an ind-affine variety. Given σ ∈ Pm[x, y] with
degree 2m− 2, the intersection V n

σ = Vσ ∩Mn(C) is an affine algebraic subvariety

of Mn(C) ∼= An2

(C) for n ≥ m+ 2 and Vσ =
⋃

n≥m+2 V
n
σ .

Let q ∈ Pn[x, y]. Formally, we define

q̃(x, y) = (xy)nq(x−1, y−1).

Lemma 3.5. Let σ ∈ Pm[x, y] be given with deg σ = 2m − 2. If u ∈ Pn[x, y] is a
solution to (1.3) for data σ, then ũ is a solution to (1.3) with data Mn−m−2

xy σ̃.
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Proof. Let v = ũ. Then v(x, y) = (xy)nu(x−1, y−1). Then

vx = nxn−1ynu(x−1, y−1)− xn−2ynux(x
−1, y−1),

vy = nxnyn−1u(x−1, y−1)− xnyn−2uy(x
−1, y−1),

vxy = n2xn−1yn−1u(x−1, y−1)− nxn−1yn−2uy(x
−1, y−1)

− nxn−2yn−1ux(x
−1, y−1) + xn−2yn−2uxy(x

−1, y−1).

This implies that

vvxy − vxvy = (xy)2n−2(u(x−1, y−1)uxy(x
−1, y−1)− ux(x

−1, y−1)uy(x
−1, y−1))

= (xy)2n−2σ(x−1, y−1)u(x−1, y−1)

= (xy)n−m−2(xy)mσ(x−1, y−1) · (xy)nu(x−1, y−1)

= Mn−m−2
xy σ̃(x, y)v(x, y).

This proves our assertion. �
This lemma leads to:

Corollary 3.6. Let σ ∈ Pm[x, y] be given with deg σ = 2m− 2. If u ∈ Pm+2[x, y]
is a solution to (1.3) for data σ, then ũ is a solution to (1.3) with data σ̃.

Apparently, it is not simple to determine whether the set Vσ is empty or not.
For the main purpose of this paper, we give only a partial solution to this question.

A polynomial u in P∞[x, y] is called diagonal if u = p(A) for some diagonal
matrix A ∈ M∞(C). If a polynomial u is diagonal, we can find a polynomial Q(t) ∈
C[t] such that u(x, y) = Q(xy). Here comes a natural question: given a diagonal
polynomial σ as a data of (1.3), can we find a solution u to (1.3) such that u is also
diagonal? From now on, we only consider prime solutions to (1.3).

Theorem 3.7. Let σ ∈ Pm[x, y] be a diagonal polynomial of degree 2m − 2 with
σ(x, y) = S(xy) for some S(t) ∈ C[t]. Then (1.3) has a solution u that is also
diagonal if and only if there exists N ∈ N with N ≥ m + 2 such that the family of
polynomial {f i

S : N + 1 ≤ i ≤ 2N − 1} has a nonzero common root. Furthermore,
if N = m+ 2, then u ∈ Pm+2[x, y] with deg u = 2m+ 2.

Proof. Assume that v(x, y) = q(xy) for some q ∈ C[t]. Then

vvxy − vxvy − σv = (xy)q′′(xy)q(xy) + q′(xy)q(xy)(3.1)

− (xy)(q′(xy))2 − S(xy)q(xy).

If u(x, y) is a diagonal polynomial that solves (1.3) for data σ, and if we write
u(x, y) = Q(xy) for some Q(t) ∈ C[t], then by (3.1), Q(t) solves (1.2) for data S(t)
with t = xy. Since Q(t) is a polynomial solution to (1.2) with data S(t), Proposition
2.4 implies the result.

Let us prove the converse. Let a be a nonzero common root of {f i
S : N +1 ≤ i ≤

2N − 1}. Define qi by q0 = 1/a and qi = f i
S(a) for i ≥ 1. By Proposition 2.4, the

polynomial Q(t) =
∑∞

i=0 qit
i solves (1.2) with data S(t). Define u(x, y) = Q(xy).

Then u(x, y) is a polynomial. By (3.1), u solves (1.3) for data σ. The rest follows
from Corollary 2.6. �

This theorem enables us to find a class of polynomials σ in P∞[x, y] such that
Vσ is nonempty. It would be interesting to find criterions to know when Vσ is
nonempty for any σ ∈ P∞[x, y].
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4. An explicit construction of a solution to the mean field equation

for hyperelliptic curves

Let H = (hij)
g
i,j=1 be a g×g positive definite hermitian matrix and consider the

corresponding canonical metric ds2H on the hyperelliptic curve X of genus g defined
in the introduction. If we let σH(x, y) be the complex polynomial σH(x, y) =∑g

i,j=1 hijx
i−1yj−1, then the canonical metric ds2H on X has the local expression

ds2H =

⎧⎪⎪⎨⎪⎪⎩
σH(x, x)

|y2| dx⊗ dx on C0,

σ̃H(z, z)

|w2| dz ⊗ dz on C ′
0.

Theorem 4.1. Suppose (1.3) has a solution u = p(A) ∈ Pg+1[x, y] for the data σH

with A ∈ Mg+1(C) being positive definite. Then the function

ϕ =

⎧⎪⎪⎨⎪⎪⎩
4|f(x)|
u(x, x)

on C0,

4|g(z)|
ũ(z, z)

on C ′
0,

is a globally defined nonnegative smooth function whose zero set coincides with the
set of Weierstrass points of X and ψ = logϕ defines smooth function on X \
{P1, · · · , P2g+2} satisfying (1.1)

Proof. The proof is the same as that given in our previous paper; we give a sketch
of the proof. For more details, see [2]. Let us verify that Δψ + eψ = 0 on U =
X \ {P1, · · · , P2g+2}. We will prove this equation on U ∩C0. Since u satisfies (1.3),
on U ∩ C0,

∂2

∂x∂x
logϕ = −uxxu− uxux

u2
= −σu

u2
= −σ

u
.

As a consequence,

ΔHψ = 4
|f(x)|
σ(x, x)

∂2

∂x∂x
logϕ = −4

|f(x)|
u(x, x)

= −ϕ = −eψ.

Similarly, the equation holds on U ∩ C ′
0.

Let P = Pk be a Weierstrass point of X. In a coordinate neighborhood (UP , ζ) of
P = Pk, where ζ =

√
x− ek, the function ψ has a local expression ψ = 2 log |ζ|+α,

where α is a nonzero smooth function on UP . By classical analysis, the action of
the Laplace operator Δ on ψ creates a Dirac delta measure 4πδPk

. We complete
the proof of our assertion. �

Since H is a g× g positive definite hermitian matrix, there exists a g× g unitary
matrix U such that U∗HU is a diagonal matrix Λ with positive diagonals. We
assume that Λ = diag(λ1, · · · , λg) with λi > 0 for 1 ≤ i ≤ g. Let us denote

SΛ(t) =
∑g−1

i=0 λi+1t
i; then the polynomial σΛ(x, y) = SΛ(xy) is diagonal. In other

words, we consider the canonical metric on X of the form

ds2Λ =

⎧⎪⎪⎨⎪⎪⎩
∑g

i=1 λi(xx)
i−1

|y2| dx⊗ dx on C0,∑g
i=1 λi(zz)

g−i

|w2| dz ⊗ dz on C ′
0.
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One can use Theorem 3.7 to determine diagonal solutions to (1.3) for σH in this
case and to obtain “positive definite” solutions to (1.3) for σH . We need further
analysis, i.e., solutions u = p(A) so that A is a g × g positive definite hermitian
matrix. For g ≥ 2, let {F i(x0, · · · , xg−1, t) : i ≥ 1} be the sequence of polynomials
defined in (2.4). Let V be the affine algebraic subset of Cg+1 defined by the zero set

of the polynomials {F g+2, · · · , F 2g−1} and let Dg+1
+ be the set of all n-tuples of real

numbers (a1, · · · , ag+1) such that ai > 0 for all 1 ≤ i ≤ g + 1 and let Qg+1
+ be the

subset of all Dg+1
+ consisting of points (a0, · · · , ag+1) so that F i(a0, · · · , ag+1) > 0

for 1 ≤ i ≤ g+1. If there exists a positive real number a such that (Λ, a) ∈ V ∩Qg+1
+ ,

then the polynomial

(4.1) u(Λ,a)(x, y) =
1

a
+

g+1∑
i=1

F i(Λ, a)(xy)i

solves for (1.3) and equals p(A) for A = diag(1/a, F 1(Λ, a), · · · , F g+1(Λ, a)) and
hence determines a solution to (1.1) by

(4.2) ψ(Λ,a) =

⎧⎪⎪⎨⎪⎪⎩
log

|f(x)|
u(Λ,a)(x, x)

on C0,

log
|g(z)|

ũ(Λ,a)(z, z)
on C ′

0,

for Λ = diag(λ1, · · · , λg). Let us take a look at the case when X is of genus two
and of genus three.

Example 4.2. Let X be the hyperelliptic curve defined by the equation y2 = f(x)
with metric ds2, where f(x) is a degree six polynomial with six distinct roots and

ds2 =
1 + |x|2
|y2| dx⊗ dx.

In this case, S(t) = 1 + t. Then f1
S(t) = 1 and f2

S(t) = (t + 1)/4 and f3
S(t) = t/9

and

f4
S(t) = − 1

192
t2 +

1

64
t,

f5
S(t) =

1

1800
t3 − 1

600
t2.

One sees that 3 is the common root of the polynomials f4
S(t) and f5

S(t). Then
h0 = 1/3 and h1 = f1

S(3) = 1 and h2 = f2
S(3) = 1 and h3 = f3

S(3) = 1/3. We obtain
a polynomial u(x, y) by

u(x, y) =
1

3
+ xy + (xy)2 +

1

3
(xy)3

which solves (1.3) for data σ(x, y) = 1 + xy. This gives us a solution ψ to (1.1) by
the construction of Theorem 4.1 for the genus two hyperelliptic curve:

ψ =

⎧⎪⎪⎨⎪⎪⎩
log

12|f(x)|
(1 + |x|2)3 on C0,

log
12|g(z)|

(1 + |z|2)3 on C ′
0,

The result coincides with that obtained in our previous paper.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

3704 JIA-MING (FRANK) LIOU AND CHIH-CHUNG LIU

Example 4.3. Let X be the hyperelliptic curve defined by the equation y2 = f(x)
with the metric ds2, where f(x) is a polynomial with eight distinct roots and

ds2 =
1 + |x|2 + |x|4

|y2| dx⊗ dx.

In this case, S(t) = 1 + t + t2. Then f1
S(t) = 1 and f2

S(t) = (t + 1)/4 and f3
S(t) =

(t+ 1)/9 and f4
S(t) = (−t2 + 11t)/192 and

f5
S(t) =

1

1800
t3 − 11

1800
t2 +

1

75
t,

f6
S(t) = − 1

11520
t4 +

11

11520
t3 − 1

405
t2 +

1

324
t,

f7
S(t) =

1

58800
t5 − 401

2116800
t4 +

373

705600
t3 − 43

52920
t2.

One sees that 8 is the common root of the polynomials f5
S(t) and f6

S(t) and f7
S(t).

We see that h0 = 1/8 and h1 = f1
S(8) = 1 and h2 = f2

S(8) = 9/4 and h3 = f3
S(8) = 1

and h4 = f4
S(8) = 1/8. We obtain a polynomial

u(x, y) =
1

8
+ xy +

9

4
(xy)2 + (xy)3 +

1

8
(xy)4

that solves (1.3) for the data σ(x, y) = 1 + xy + (xy)2. This gives us a solution ψ
to (1.1) by Theorem 4.1 for the genus three hyperelliptic curve:

ψ =

⎧⎪⎪⎨⎪⎪⎩
log

12|f(x)|(
1
8 + |x|2 + 9

4 |x|4 + |x|6 + 1
8 |x|8

) on C0,

log
12|g(z)|(

1
8 + |z|2 + 9

4 |z|4 + |z|6 + 1
8 |z|8

) on C ′
0,

5. Adiabatic limit of solutions to mean field equations

We propose a possible direction following the results above. Rescale the canonical
metric by γ ∈ R+, i.e., we consider the rescaling of the canonical metric ds2Λ,γ =

γds2Λ. With respect to this metric, the mean field equation is equivalent to

(5.1) Δψγ + γeψγ = 4πγ

2g+2∑
i=1

δPi

with respect to ds2Λ.
1 Following from the analysis in [1], we study the existence of

a solution to this equation for small γ, as well as the limit of the solutions {ψγ}
as γ → 0. Directly observing (5.1), we naturally expect Δψγ → 0 as γ → 0, or
that ψγ approaches to a constant function since X is a connected closed manifold.
Classical analysis from [1] confirms both expectations. We normalize the metrics
so that the area of X is 1. Let W k,p(X) be the completion of C∞(X) with respect
to the (k, p)-norm:

‖u‖Wk,p(X) =
k∑

j=0

(∫
X

|∇ju|pdν
)1/p

,

1For convenience, we use Δ instead of ΔΛ in this section.
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where ∇ju is the j-th covariant derivative of u. We call W k,p(X) the Sobolev (k, p)-
space on X.2 A technical analytic statement is needed to conclude the asymptotic
behaviors:

Proposition 5.1. If uj → u weakly in W 1,2(X), then euj → eu strongly in L2(X).

Proof. For the proof, see (3.7) in [1]. �

Theorem 5.2 (Adiabatic limit). A solution to (5.1) exists for all γ small enough
and approaches a constant in W 2,2(X) as γ → 0.

Proof. We only sketch the existence part of the proof since it is a replica of the
proof from Theorem 7.2 in [1]. Let

(5.2) ψγ := vγ + 4πγ

2g+2∑
i=1

Gi,

where Gi is the Green’s function satisfying ΔGi = −δPi
+ 1. Solving (5.1) is then

equivalent to solving the following equation:

(5.3) Δvγ + γhevγ = 8πγ(g + 1),

where the function h = exp
(
4π

∑2g+2
i=1 Gi

)
∈ C∞(X) is nonnegative with zero set

precisely the Weierstrass points. This is a Kazdan-Warner equation of the type
discussed in section 7 from [1], which is solved by a variational method. One notes
that (5.3) is the minimizing equation to the functional

(5.4) J(u) =

∫
X

(
1

2
|∇u|2 + 8πγ(g + 1)u

)
dν

on the subset B ⊂ W 1,2(X) satisfying the constraint equation

(5.5)

∫
X

heudν = 8π(g + 1).

Following identical reasoning, we have the following estimate for J :

(5.6) J(u) ≥ 1

4β
(2β − 8πγ(g + 1))‖∇u‖2L2(X) + δ,

where δ is a constant and β is a Trudinger constant for X both independent of γ.
More precisely, β is a positive constant so that∫

X

eβv
2

dν

are uniformly bounded for all v ∈ W 1,2(X) with v = 0 and ‖∇v‖L2(X) ≤ 1. Such a
constant always exists for surfaces (cf. (3.4) in [1]). Therefore, for γ small enough
so that 2β − 8πγ(g + 1) > 0, J is bounded below and positive.

For each γ, (5.6) and Sobolev embedding shows that the minimizing sequence
{viγ} of J is contained in a fixed ball of radius Rγ in W 1,2(X), which is weakly
compact. Passing to a subsequence, let vγ be the weak limit. Arguments in the
proof of Theorem 5.3 in [1] show that vγ minimizes J in B and, therefore, is a strong
limit and solution to (5.3). The proof there also provides a regularity argument,

2In some context, people use Hk,p(X) for Sobolev (k, p) spaces.
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which is applicable to our case here, to show that vγ is actually smooth. The
existence of a smooth solution for each γ is established.

Furthermore, one notices that the radii Rγ are uniformly controlled over γ (in
fact proportional to (2β−8πγ(g+1))−1) and therefore {vγ} are uniformly bounded
in W 1,2(X). Following identical arguments, let v be the limit of vγ in W 1,2(X).
Proposition 5.1 then implies that evγ converge to ev in L2(X) and, therefore, are
uniformly bounded in L2(X). It then follows from elliptic regularity of Δ in (5.3):

(5.7) ‖vγ‖W 2,2(X) ≤ c(γ‖8π(g + 1)− hevγ‖L2(X) + ‖vγ‖L2(X))

that vγ are uniformly bounded in W 2,2(X). The estimate, together with some
Schauder estimates, also imply that v ∈ C∞(X). After taking a subsequence, we
conclude that vγ → v in W 2,2(X). Taking the limit γ → 0 in (5.3), it then follows
that

(5.8) Δv = lim
γ→0

Δvγ = 0

and, therefore, v is a constant function since X is closed. �

It is of great interest, as stated in [1], to study the upper bound of γ:

γ0 =
β

4π(g + 1)

for (5.3) to be solvable, a quantity related to the geometry of X. It is not imme-
diately clear whether γ0 ≥ 1, despite the explicit solution to (5.3) with γ = 1 in
Section 4. One may attempt to construct a variation of (4.2) depending on γ, and
its corresponding mean field equation so that the limiting solution at γ = 0 coin-
cides with that of Theorem 5.2. Such a conjecture provides significant geometric
insight. In the case of Example 4.2 where solutions are precisely the logarithm of
Gaussian curvatures, the limiting solution suggests that the manifold deforms into
S2, a sign of topological jumps, or bubbling.
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