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Abstract: On a smooth line bundle L over a compact Kähler Riemann surface �, we
study the family of vortex equations with a parameter s. For each s ∈ [1,∞], we invoke
techniques in Bradlow (Commun Math Phys 135:1–17, 1990) by turning the s-vortex
equation into an s-dependent elliptic partial differential equation, studied in Kazdan and
Warner (Ann Math 2:14–47, 1978), providing an explicit moduli space description of
the space of gauge classes of solutions. We are particularly interested in the bijective
correspondence between the open subset of vortices without common zeros and the
space of holomorphic maps. For each s, the correspondence is uniquely determined by
a smooth function us on �, and we confirm its convergent behaviors as s → ∞. Our
results prove a conjecture posed by Baptista in Baptista (Nucl Phys B 844:308–333,
2010), stating that the s-dependent correspondence is an isometry between the open
subsets when s = ∞, with L2 metrics appropriately defined.

1. Introduction

The vortex equations, a set of gauge invariant equations characterizing the minimum
of certain energy functionals on a Hermitian vector bundle, have been studied quite
extensively. An early occurrence can be found in Ginzburg and Landau’s description
of the free energy of superconducting materials, which depends on the external electro-
magnetic potential and the state function of certain electron pairs known as the “Cooper
pairs”. Finding the equilibrium state of the material amounts to minimizing the free
energy. See [J-T] for a complete description.

Various forms of the energy functionals are available in the literature. We shall vaguely
refer to them as the Yang–Mills–Higgs functional, with historical origins from the classi-
cal Yang–Mills functional on field strength of electromagnetic waves. We will investigate
a particular functional, which we describe below.

Let L be a degree r line bundle over an n-dimensional closed (compact with empty
boundary) Kähler manifold (M, ω). Let H be a Hermitian metric on L and let A(H) be
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the space of connections which are H -unitary. Let G be the H -unitary gauge group of
the bundle L . To fix the notations uniformly, we will replace the base manifold M by �
if it is a closed Riemann surface of genus b, for which we make additional assumption
that r > 2b−2 so that the vector space of holomorphic sections H0(�, L) is of uniform
dimension on �.

The Hermitian structure H naturally defines L2 norms, which induce corresponding
norm topologies, on complex and vector valued forms. A(H) and �0(L) (the space of
smooth global sections of L → �) in fact possess standard Kähler structures (see [G]
for details). With these preliminary structures, we consider the parameterized Yang–
Mills–Higgs functional defined on the space of H -unitary connections and k tuples of
smooth sections

YMHτ.s : A(H)×�0(L)× · · · ×�0(L) → R,

given by:

YMHτ.s(D, φ) := 1

s2
||FD||2L2 +

k∑

i=1

||Dφi ||2L2 +
s2

4

∣∣∣∣∣

∣∣∣∣∣

k∑

i=1

|φi |2H − τ

∣∣∣∣∣

∣∣∣∣∣

2

L2

. (1.1)

Here FD ∈ �1,1(M, End(L)) � �1,1(M) is the curvature of the connection D and
φ = (φ1, . . . , φk) is understood to be a k tuple of sections. The positive real constant s
possesses physical significance in various situations. Mathematically, when n = 1, the
parameter s in the functional represents how the Yang–Mills–Higgs functional changes
when deforming the metric by rescaling, that is, ωs = s2ω. The other parameter τ first
appears in [Br], in which s = 1.

Applying standard Kähler identities, one can obtain the minimizing equations for
YMHτ,s (See [B,Br] for derivations when s = 1), referred to as the s-vortex equations:

⎧
⎪⎪⎨

⎪⎪⎩

F (0,2)D = 0

D(0,1)φ = 0√−1�FD + s2

2 (
∑k

i=1 |φi |2H − τ) = 0.

(1.2)

Here (p, q) refers to the decomposition of forms with respect to a fixed complex structure
of M . Recall that � is the L2 adjoint of the Lefschetz operator

L(γ ) = γ ∧ ω.
On (1, 1) forms, � is simply the trace with respect to ω:

�(γ ) = 〈γ, ω〉ω ∈ C∞(M).

The first equation in (1.2) says that D(0,1) is integrable, hence that it induces a holomor-
phic structure on L (by a celebrated theorem of Newlander–Nirenberg). For M = �,
this condition is automatic. The second equation says that each section φi is holomor-
phic with respect to this holomorphic structure, and we will adhere to this notational
convention throughout this paper. The third equation imposes a relation between curva-
ture forms and norms of the k sections. In some literature, the first two equations are
assumed and the third equation is called the vortex equation. We, however, study the
three equations altogether.
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One of the main goals of this paper is to analyze the adiabatic limit of solutions to
(1.2) as s → ∞. Formally, as s increases, the curvature term in the third equation in (1.2)
becomes negligible. Therefore, it is reasonable to define the vortex equation at s = ∞
to be

⎧
⎪⎪⎨

⎪⎪⎩

F (0,2)D = 0

D(0,1)φ = 0
∑k

i=1 |φi |2H − τ = 0.

(1.3)

The solutions to these equations are then pairs of integrable connections, and corre-
sponding k tuple of holomorphic sections with image lying in the sphere of radius τ
(with respect to the norm defined by H ). The systems in Eqs. (1.2) and (1.3) differ by
the third equation and our focus is to understand the limiting behaviors of the solutions
of the third equation in (1.2) as s → ∞. We will achieve this by first reducing the
equation, as in [Br], to a scalar non-linear PDE and then by successively approximating,
as in [K-W], these equations by means of linear ones.

The invariance of Eqs. (1.2) and (1.3) under natural G action allows us to define the
space of gauge classes of solutions:

Definition 1.1. For each k, s and τ , we define the moduli space of solutions

νk(s, τ ) = {(D, φ) ∈ A(H)×�0(L)× · · · ×�0(L) | (1.2) holds}/G.
Also, we define

νk(∞, τ ) = {(D, φ) ∈ A(H)×�0(L)× · · · ×�0(L) | (1.3) holds}/G.
The spaces of solutions to (1.2) and (1.3) are smooth (actually Kähler) manifold as

they can be realized as the level set of certain moment map (see, for example, [G] for
details). Furthermore, smooth connections on line bundles are clearly irreducible, and
G acts on sections and connections by multiplication and conjugation, respectively. It
is therefore a free action, making the quotient space νk(s, τ ) of solution spaces to (1.2)
and (1.3) smooth manifolds (see Chapter 4 and 5 of [D-K] for detailed discussions). We
will see, in section 2, that they are of finite dimensions.

Bradlow [Br,Br1], Garcia-Prada [G] and Bertram et al. [B-D-W] have described
νk(1, τ ) quite thoroughly for M = �. In fact, we will see that for finite values of s and
τ large enough, νk(s, τ ) are all topologically identical.

Before we state the main statements, we pause briefly to examine the two real parame-
ters s and τ in the vortex equations (1.2). One notes that the gauge class [D, φ] satisfies
(1.2) with s and τ precisely when [D, φ√

τ
] does, with s and τ replaced by s

√
τ and 1,

respectively. That is, the rescaling

[D, φ] 
→ [D,
φ√
τ

]

defines a bijection between νk(s, τ ) and νk(s
√
τ , 1). These two parameters can therefore

be combined into one without altering the descriptions of the solution spaces. However,
for the convenience of comparing with classical results, we keep them separated, with
the understanding that they are not independent parameters.

Our main result is motivated by results in [B] and [B-D-W]. We are interested in the
subset of νk(s, τ ) consisting of k sections without common zeros:
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Definition 1.2.

νk,0(s, τ ) = {[D, (φ1, . . . , φk)] ∈ νk(s, τ ) | ∩k
i=1 φ

−1
i (0) = ∅}.

This subset is open and dense with respect to the quotient topology of νk,0(s, τ )
descended from the norm topology of the solution space. Indeed, the G-equivariant
evaluation map

ev([D, φ, p]) := φ(p) ∈ C
k

is continuous with respect to the standard topology of C
k , and νk,0(s, τ ) is the com-

plement of ev−1(0, . . . , 0), which is closed by continuity. The density also follows
obviously since the Hermitian structure is locally given by smooth functions, and zeros
can always be smoothly perturbed.

The topological descriptions of νk,0(s, τ ) have been studied extensively. Some ref-
erences include [C-G-R-S,M-P,W], and [Z]. For M = �, the spaces νk,0(s, τ ) are
completely described in [B-D-W] and [B]. For s, τ large enough, there is a diffeomor-
phism


s : Holr (�,CP
k−1) → νk,0(s, τ ),

where Holr (�,CP
k−1) is the space of degree r holomorphic maps from � to CP

k−1.
(Recall that r is the topological degree of the line bundle L). Of course, the smooth
structure of Holr

(
�,CP

k−1) needs to be specified and a brief summary of relevant
classical descriptions will be provided in Sect. 2. The constructions of diffeomorphisms

ss will also be provided there.

In Sect. 4, we establish metrical relations between these two spaces and their depen-
dence on the parameter s. These results are applications of our main analytic result,
showing that the family 
s can be very well controlled. More precisely, we will see,
in Sects. 2 and 3, that 
s identifies a holomorphic map from � to CP

k−1 with a vor-
tex [D, φ] ∈ νk,0(s, τ ) via a complex gauge element in GC. On a line bundle, such
an element is uniquely determined by a real smooth function us on �, and we show
that they exhibit convergent behaviors as s → ∞. The analytic result is of independent
interest. Let Hl,p denote the Sobolev l, p space on a compact Riemannian manifold M .
Presented as the Main Theorem in Sect. 3, the result is:

Theorem 1.3 (Main Theorem). On a compact Riemannian manifold M without bound-
ary, let c1 be any constant, c2 any positive constant, and h any negative smooth function.
Let c(s) = c1 − c2s2, for each s large enough, the unique solutions ϕs ∈ C∞(M) for
the equations

�ϕs = c(s)− s2heϕs

are uniformly bounded in Hl,p for all l ∈ N and p ∈ [1,∞]. Moreover, in the limit
s → ∞, ϕs converges smoothly (i.e., uniformly in all Hl,p) to

ϕ∞ = log

(
c2

−h

)
,

the unique solution to

heϕ∞ + c2 = 0.

This result aids us in the study of dynamics of vortices, or evolutions of metrics, first
explored by Manton ([M]). There, an approximating model governed by the geodesics
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of a naturally defined L2 metric (or kinetic energy) on νk(1, τ ) is provided for the
motion of vortices. This motivated a need for descriptions of the natural L2 metric in
precise mathematical languages. (See, for example, [S,R].) A more concrete description
is available when k = 1, when ν1(1, τ ) is identified with a familiar space with explicit
coordinates. Samols has provided a semi-explicit coordinate expression of the natural
L2 metric using the coordinates of the parametrizing space. It is natural to consider
what happens to the metrics as one varies the parameters s, k, and τ , and let s approach
infinity. Baptista has proposed a conjecture in [B], asserting that the s-dependent L2

metrics on the open subset νk,0(s, τ ) can be pulled back to a metric on Holr (�,CP
k−1).

As s → ∞, it was conjectured that the pullback metric approaches a familiar one on
Holr (�,CP

k−1). In Sect. 4, we apply the Main Theorem 3.4 to prove this conjecture.
It is worthwhile to point out that the convergent behaviors of vortices on νk,0(s, τ )

have been established elsewhere. In [Z], the compactness properties of vortices with
uniformly bounded energies have been thoroughly described for the more general case
of symplectic vortex equations. The convergent discussions for our particular setting have
appeared in [X]. The novelty of our work lies in the scrutiny of the limiting elements
in a precise analytic framework using rather elementary techniques, and the fact that
our results are a consequence of a more general theorem on the uniform regularity of
solutions to a family of semilinear P.D.E. on a general closed Riemannian manifold.
The other novelty is its application toward a precise formulation and rigorous proof of
Baptista’s conjecture (Conjecture 5.2 in [B]) on the dynamics of vortices, for which
other established results do not seem immediately applicable.

2. Backgrounds and Statements of the Results

We begin by briefly summarizing the descriptions of νk(s, τ ). Readers familiar with con-
structions in [Br,B-D-W] may skip to Lemma 2.2. One must first ensure the conditions
for existences of the solutions to the vortex equations (1.2) and (1.3), or, equivalently,
the non-emptiness of νk(s, τ ). For a vector bundle of general rank, the non-emptiness is
equivalent to some τ and φ dependent algebraic properties on subsheaves of E called
τ -stability. See [Br1,B-D-W] for detailed explanations. Throughout this paper, we
restrict our attention to rank 1 vector bundles, or line bundles denoted by L . Having
no nontrivial proper subsheaf, the τ -stability degenerates to a condition solely on τ . By
integrating the third equation in (1.2), a necessary condition for solution to exist is that

s2τ ≥ 4πr

volM
.

We will see that it is also sufficient. In the case s = 1, k = 1, and M = �, a Riemann
surface, we have:

ν1(1, τ ) =

⎧
⎪⎪⎨

⎪⎪⎩

∅; τ < 4πr
vol�

Jacr�; τ = 4πr
vol�

Symr�; τ > 4πr
vol� ,

where r = deg(L). Here, Symr� is the space of unordered r tuple of points of� (or the
space of divisors of� with degree r ) and Jacr� is the Jacobian torus of� parametrizing
holomorphic structures of L (see [Br]).
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The parameter s does not alter the conclusion. We have seen that the effect of s2

can be thought of as scaling the section φ and replacing τ by s2τ . This observation
generalizes Bradlow’s result in [Br] naturally:

ν1(s, τ ) =

⎧
⎪⎪⎨

⎪⎪⎩

∅; s2τ < 4πr
vol�

Jacr�; s2τ = 4πr
vol�

Symr�; s2τ > 4πr
vol� .

(2.1)

The crucial step to achieve these descriptions is to switch perspective, from one in
which we look for pairs (D, φ) on a bundle with fixed unitary structure, to one in which
we look for a metric on a fixed holomorphic line bundle with a prescribed holomorphic
section. In the second perspective, the analytic tools from [K-W] can be applied to solve
for the special metrics. The equivalence of the two perspectives is given in [Br], and we
briefly summarize them here.

Let C be the space of holomorphic structures of L , that is, the collection of C-linear
operators

∂̄L : �0(L) → �0,1(L)

satisfying the Leibniz rule. It is a classical fact from differential geometry that given
a Hermitian structure H , we have A(H) � C. The original approach toward solving
vortex equations is to fix a Hermitian structure H and consider the following space:

Nk := {(D, φ) ∈ A(H)×�0(L)× · · · ×�0(L) | D(0,1)φi = 0 ∀i}.
For a fixed H this space is bijective to

{(∂̄, φ) ∈ C ×�0(L)× · · · ×�0(L) | ∂̄φi = 0 ∀i}. (2.2)

We then aim to find a pair in Nk so that the third equation of the vortex equations (1.2)
is satisfied. The solvability statement we seek is:

Given a Hermitian structure H, we find all pairs (D, φ) ∈ Nk that solve the third
equation of (1.2).

Alternatively, we may start without fixing the Hermitian structure. The second
description of Nk (2.2) above continues to make sense, and we pick an arbitrary pair
(∂̄, φ) ∈ Nk . This pair determines a unique connection, and thus a unique curvature,
once a Hermitian metric K is chosen. We specifically choose K so that the third equation
of (1.2) is satisfied with this metric, and the curvature it defines:

√−1�FK +
s2

2
(

k∑

i=1

|φi |2K − τ) = 0.

Here, FK is the curvature of the unique K -unitary connection with holomorphic structure
∂̄ . To spell out the details, the alternative approach of the problem requires us to start
with the space

Tk = {(∂̄, φ, K ) ∈ C ×�0(L)× · · · ×�0(L)× H},
where H is the space of Hermitian structures of L . We fix the first two components,
and the solvability statement states the unique existence of the corresponding third
component:
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Given a pair (∂̄, φ) ∈ C ×�0(L)×· · ·×�0(L) such that ∂̄φi = 0 ∀i , we find all
Hermitian metrics K solving the third equation of (1.2) with the curvature and
norms determined by K .

Such an approach allows us to apply analytic techniques to solve the vortex equations.
It is well known that any two Hermitian metrics are related by a positive, self-adjoint
bundle endomorphism, i.e. by an element in the complex gauge group GC. On a line
bundle L , End(L) � L ⊗ L∗ � OM , so any two C∞-Hermitian metrics on L , say H
and K , are related by K = f H with f ∈ C∞(M) and f = e2u > 0 for some u ∈
C∞(M). Therefore, starting with a background metric H , finding the special metric K is
equivalent to finding the unique function u satisfying a certain elliptic PDE determined
by the third equation of (1.2).

This alternative approach is equivalent to the original one only if we are able to build
a bijection between the two solution spaces, up to gauges. The gauge group for the
alternative space is however not only G but rather GC, the complex gauge group. It acts
on Tk by

g∗(∂L , φ, H) = (g ◦ ∂L ◦ g−1, φg, Hh). (2.3)

Here, h = g∗g = e2u for a smooth real function u. Unlike the unitary gauge G, this
action does not necessarily preserve the H -norm of φ. We define

Tk(s, τ ) = {(∂̄L , φ, K ) ∈ Tk ; (1.2) holds with metric K }/GC. (2.4)

We now summarize the bijection between Tk(s, τ ) and νk(s, τ ). The proof is directly
reproduced from Proposition 3.7 in [Br], proved for k, s = 1. However, it is by no means
special to that particular value, and the proof applies to general values of k, s without
any modification.

Lemma 2.1. [Br] There is a bijective correspondence between νk(s, τ ) and Tk(s, τ ).

Proof. (Sketch) To define the forward map Ps : νk(s, τ ) → Tk(s, τ ), we take [D, φ] ∈
νk(s, τ ). The integrability of D implies that its anti-holomorphic part D(0,1) defines a
holomorphic structure, and we define

Ps([D, φ]) = [D(0,1), φ, H ],
where H is the background metric for which D is H -unitary. For the inverse map Gs ,
take [∂̄L , φ, K ] ∈ Tk(s, τ ). The Hermitian metric K on L is related to H by K = e2u H ,
and g = eu acts on holomorphic structure and sections as in (2.3). We define

Gs([∂̄L , φ, K ]) = [D(g∗∂̄L , H), φ ◦ g],
where D(g∗∂̄L , H) is the metric connection of H with holomorphic structure g∗∂̄L . That
the pair (D(g∗∂̄L , H), φ ◦ g) solves the vortex equation (1.2) and that Ps and Gs are
inverse to each other are proved in [Br]. ��

The alternative perspective yields a much more intuitive understanding of Bradlow’s
description of ν1(1, τ ) for large τ . An element 〈z1, . . . , zr 〉 ∈ Symr� uniquely deter-
mines a pair (∂̄, φ)with ∂̄φ = 0, up to GC action, that vanishes precisely at these points.
The identification

T1(1, τ ) � Symr�
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is achieved once we ensure that the third component K is uniquely determined by the
first two, up to GC.

With the identification in Lemma 2.1, finding (D, φ) to satisfy Eq. (1.2) is equivalent
to fixing a holomorphic structure ∂̄L , a holomorphic section φ, and finding a special
metric Ks = He2us so that Eq. (1.2) is satisfied with this metric. As we have claimed,
this turns the third equation in (1.2), which is a tensorial one, into a scalar equation of
us . Moreover, it turns the question of understanding the limiting behaviors of vortices
into analyzing the convergent behaviors of us .

Before we describe νk(s, τ ) for general k, we observe that near the adiabatic limit s =
∞, the third possibility in (2.1) prevails. As we are mainly interested in the asymptotic
behaviors of vortices, that possibility will be the focus of our attention, and τ dependence
becomes insignificant. We will therefore assume τ = 1 and write νk(s) instead of νk(s, 1)
from now on.

νk(s) := νk(s, 1),

and

νk,0(s) := νk,0(s, 1)

for large values of s.
The generalized description to (2.1) is given in [B-D-W]. We are particularly inter-

ested in the open subset νk,0(s) of νk(s) defined in Definition 1.2. Let Tk,0(s) be the
corresponding open subset of Tk(s) via the identification in Lemma 2.1. It is obvious that
νk,0(∞) = νk(∞) since the third equation of (1.3) prohibits simultaneous vanishing
of the k sections. It is also clear that ν1,0(s) is empty for all s < ∞, since any global
holomorphic section of a line bundle with degree r must vanishes exactly at r points,
counting multiplicities. This is not the case when we have more than one section. In fact,
it has been shown in [B-D-W] that

Holr (�,CP
k−1) � νk,0(1), (2.5)

where the equivalence above is in fact a diffeomorphism, under the initial assumption
r > 2b − 2. We hereby provide a brief description of the manifold structure of
Holr

(
�,CP

k−1) in this circumstance. It is a classical fact that for r > 2b − 2,
Holr

(
�,CP

k−1) is a smooth manifold of complex dimension

m = kr − (k − 1)(b − 1).

Every f ∈ Holr
(
�,CP

k−1) is of the form

f = [ f1, . . . , fk],
where each f j is a meromorphic function on�. Since f is of degree r , each f j vanishes
exactly on a divisor E j ∈ Symr (�). The space Symr (�) is locally diffeomorphic to
C

r , by identifying an unordered r -tuple 〈z1, . . . , zr 〉 with the coefficients of the monic
polynomial (z − z1) · · · (z − zk). Each f ∈ Holr

(
�,CP

k−1) is then associated with an
element in Symr (�)× · · · × Symr (�), a complex manifold of dimension kr . Clearly,
not every (E1, . . . , Ek) ∈ Symr (�)× · · · × Symr (�) determines a holomorphic map.
An immediate restriction is that

E1

⋂
. . .
⋂

Ek = ∅, (2.6)
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and therefore we restrict our attention to

Divk
r := {(E1, . . . , Ek) ∈ Symr (�)× · · · × Symr (�) |

k⋂

i=1

Ei = ∅},

which is still of dimension rk since Divk
r is clearly an open subset of Symr (�)× · · · ×

Symr (�). The only other condition for (E1, . . . , Ek) ∈ Divk
r to determine a unique

holomorphic map is given in Corollary 1.10 in [K-M]. It requires that

μr (E1) = · · · = μr (Ek). (2.7)

The map μr is the generalized Abel-Jacobi map. Precisely, for E j = p1
j + · · · + pr

j , we
define

μr (E j ) := μ(p1
j ) + . . . μ(pr

j ), (2.8)

where μ : � → C
b/Z2b � (S)2b is the classical Abel-Jacobi map. For r > 2b − 1, the

rank of the differential ofμk is of rank b−1 (cf. Proposition V.4.7 of [Gr]). The defining
condition (2.7) for the space of k tuples of divisors corresponding to Holr

(
�,CP

k−1)

then consists of k − 1 equations defined by maps with differentials of rank b − 1. This
correspondence therefore defines a manifold structure of Holr

(
�,CP

k−1), and (2.7)
then reduces the original dimension kr by (k − 1)(b − 1). More details can be found in
section 1 of [K-M] and section 5.4 of [Mi].

With these preliminary knowledge recalled, we state

Lemma 2.2. [B] For each s ∈ [1,∞], there is a diffeomorphism


s : Holr (�,CP
k−1) → νk,0(s),

in the smooth structures described immediately above (for Holr
(
�,CP

k−1)) and Sect. 1
(for νk,0(s)).

Proof. (Sketch) We only sketch the outline of the construction of 
s . Details and justi-
fications are provided in Sect. 3.

The inverse map 
−1
s is obvious. For k sections φ = (φ1, . . . , φk) without common

zeros, we can construct maps from � to CP
k−1 defined by


−1
s ([D, φ])(z) := φ̃(z) = [φ1(z), . . . , φk(z)]. (2.9)

The right hand side of (2.9) is well defined, as φ1(z), . . . , φk(z) are never zeros simulta-
neously. Moreover, on a U (1) line bundle, the transition map multiplies each section by
a uniform nonzero scalar. Therefore, (2.9) is a globally defined holomorphic map from
� to CP

k−1.
The construction of the forward map is also standard. We start with a holomorphic

map φ̃ ∈ Holr
(
�,CP

k−1). Consider O
CP

k−1(1), the anti-tautological line bundle over
CP

k−1 with hyperplane sections s1, . . . , sk . Each s j vanishes precisely on the hyperplane
defined by z j = 0. Let L = φ̃∗O

CP
k−1(1) be the pullbacked line bundle on � endowed

with sections φ = (φ1, . . . , φk) ∈ �0(L)⊕k by pulling back s1, . . . , sk via φ̃. The
map φ̃ also endows a holomorphic structure ∂̄L and a background metric H on L when a
background metric is given on O

CP
k−1(1). The first part of Sect. 3 is to modify Bradlow’s

arguments in [Br] to look for a special metric Hs , related to H by a gauge transformation
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Hs = He2us , where us is a positive smooth function. The vortex equation (1.2) is to
be satisfied if H is replaced by Hs . The triplet [∂̄L , φ, Hs] ∈ Tk,0(s) corresponds via
Bradlow’s identification in Lemma 2.1 to [Ds, eusφ] ∈ νk,0(s), where Ds is the metric
connection with respect to holomorphic structure eus ◦ ∂̄L ◦ e−us and the Hermitian
metric H , and we define


s(φ̃) = [Ds, eusφ]. (2.10)

Both 
s and 
−1
s are smooth in the smooth structures provided above. Indeed, a

holomorphic map from � to CP
k−1 is labeled by the k tuple of divisors characterizing

the zeros of each of its components. Perturbing the zeros smoothly results in smooth
variation of corresponding pullback k sections on L → �, and therefore 
s is smooth.
The smoothness of 
−1

s is obvious.
The unique existence of us is guaranteed by the following theorem, which is proved

with essentially identical reasonings from Lemma 4.1, Theorem 4.2, and Theorem 4.3
in [Br]:

Theorem 2.3 (Existence and Uniqueness of us). Fix s2 ∈ [ 4πr
V ol� ,∞] and a Hermitian

line bundle (L , H) over �. Given a holomorphic structure ∂̄L of L and k sections
φ = (φi )i so that

∂̄Lφi = 0 ∀i,

there exists us ∈ C∞ such that [Ds, eusφ] ∈ (
A(H)×�0(L)⊕k

)
/G solves the vortex

equation (1.2) (i.e. [Ds, eusφ] ∈ νk(s)).

The only generalization of Theorem 2.3 from the particular cases in [Br] is the
introduction of the parameter s (in [Br], s = 1). However, no significant modification of
the original proofs is required. Nevertheless, to clarify the geometric and analytic role of
s as it approaches the asymptotic value, we must reproduce arguments from [Br,K-W].
The proof to Theorem 2.3 commences at the beginning of Sect. 3.

Pending the proof of Theorem 2.3 above and analytic details of the correspondence

s , to be presented in Sect. 3, the sketch of the proof of Lemma 2.2 is now complete. ��

The Main Theorem of this paper, Theorem 3.4, further establishes significant controls
of these real smooth functions us uniquely determining the complex gauges.

Theorem 2.4 (Conclusion of the Main Theorem). The functions us converges to u∞ in
all Sobolev spaces, and therefore smoothly as s → ∞.

This Theorem proves a conjecture posed by Baptista in [B] on dynamics of vortices.
On νk,0(s), we consider the natural L2 metric given as follows. For each (Ds, φs) ∈
A(H)×�0(L)⊕k , we define

gs(( Ȧs, φ̇s), ( Ȧs, φ̇s)) =
∫

M

1

2s2 Ȧs ∧ ∗̄ Ȧs + 〈φ̇s, φ̇s〉HvolM , (2.11)

where ( Ȧs, φ̇s) is an element of T(Ds ,φs )

(
A(H)×�0(L)⊕k

) � �1(�) × �0(L)⊕k ,
chosen orthogonally to the gauge transformation. The second term of the integrand
makes sense since the tangent space to sections is identified with itself, and we adopt
the notation

〈φ,ψ〉H :=
k∑

i=1

〈φi , ψi 〉H .
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Picking the tangent vectors in directions orthogonal to gauge transformations, gs
descends to a metric on νk,0(s), which is identified with Holr (�,CP

k−1) via 
s . We
then pull back gs via 
s to a metric on Holr (�,CP

k−1) and try to compare it with the
ordinary L2 metric of the space of holomorphic maps. Baptista’s conjecture, a rather
holistic statement, is stated roughly as follows:

Conjecture 2.5 (Conjecture 5.2 in [B]). The pull back metrics
∗
s gs converge pointwise

to a multiple of the ordinary L2 metric of the space of holomorphic maps.

In Sect. 4, we provide a precise formulation of this conjecture, as well as a precise
convergent statement of the pullbacked metrics, before rigorously proving it.

3. Main Constructions

We first prove Theorem 2.3. To do so, we identify the equations for the unique gauges eus ,
that transform the initial data into solutions of vortex equations (1.2). Before we begin,
we state the well-known maximum principle for invertible elliptic operators, which is
crucial in our analytic derivations.

Lemma 3.1 (Maximum Principle). For the elliptic operator L = �− k, where k is any
smooth positive function, the following is true: for any p > dim M, if u ∈ H2,p satisfies
Lu ≥ 0, then u ≤ 0.

See, for example, (3.15) in [K-W] for the proof.
We now present the proof of Theorem 2.3.

Proof. (of Theorem 2.3) To begin, we briefly summarize Bradlow’s construction of the
PDEs for us to satisfy. If Hs = e2us H one has:

√−1�FHs = √−1�FH +
√−1�∂̄(H−1∂H(e2us )).

We get
√−1�FHs = √−1�FH + 2

√−1�∂̄∂us = √−1�FH −�ωus . (3.1)

Here, �ω is the Laplacian operator defined by Kähler class ω. Note that from standard
Kähler identities, we have

2
√−1�∂̄∂us = −�ωus,

where we use “analyst’s Laplacian” here. It is defined so that on Euclidean n-space
ω = √−1δi j dzi ∧ dz̄ j ,

�ω f =
n∑

j=1

∂2 f

∂z j∂ z̄ j
.

We will omit the subscript ω from �ω if no confusion arises. Since |φi |2Hs
=

e2us |φi |2H ∀i, it follows that we can rewrite the last equation in (1.2), with metric
H replaced by Hs , as:

−�us +
s2

2

k∑

i=1

|φi |2H e2us +

(√−1�FH − s2

2

)
= 0. (3.2)
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If we normalize the Kähler metric so that V olω(M) = 1, we can define

c(s) := 2
∫

�

(√−1�FH − s2

2

)
dvolω = 2

∫

�

√−1�FHω
n − s2

2
dvolω

= 2
∫

�

√−1�FHω
n − s2

2
= 2c1 − s2

2
,

where c1 = ∫
�

√−1�FHω
n is independent of s and H . Consider ψ , a solution to:

�ψ =
(√−1�FH − s2

2

)
− c(s)

2
= √−1�FH − c1, (3.3)

which is clearly independent of s.
Setting ϕs := 2(us − ψ), us satisfies (3.2) if and only if ϕs satisfies:

�ϕs − s2

2
(

k∑

i=1

|φi |2H e2ψ)eϕs − c(s) = 0. (3.4)

This is of the form:

�ϕs = −
(

s2

2
h

)
eϕs + c(s), (3.5)

with h = −∑k
i=1 |φi |2H e2ψ < 0 and c(s) < 0 (for large s). Proving Theorem 2.3 then

boils down to proving the unique existence of solutions to (3.5). For s = 1, Lemma
9.3 in [K-W] guarantees the unique solution to exist. We state the analogous theorem
for general s below. Our proof differs only slightly from that of [K-W] in which we
choose certain required data more specifically to establish the uniformity and convergent
behaviors of solutionsϕs over s. The theorem itself is of independent interest, and applies
to general functions on compact Riemannian manifold (M, g). We however keep the
notations identical (except that we replace h

2 by h) for the convenience of application to
our particular PDE (3.5).

With these, we state our main constructions.

Theorem 3.2 (Existence and Uniqueness of ϕs). On a compact Riemannian manifold
(M, g) without boundary, let c1 be any constant, c2 any positive constant, and h any
negative smooth function. Let c(s) = c1 − s2c2, the partial differential equation

�ϕs = −s2heϕs + c(s)

has a unique smooth solution for all s large enough.

Proof. We first establish the uniqueness, a consequence of the maximum principle. Fix
s ∈ R, suppose that ϕ1

s and ϕ2
s are smooth solutions to the equation and so is their

difference ϕ1
s − ϕ2

s . If ϕ1
s �= ϕ2

s , without loss of generality, we may assume

inf
M

{ϕ1
s (x)− ϕ2

s (x)} < 0.

Since M is compact and ϕ1
s − ϕ2

s is smooth, the infimum must be attained at some point
x0 ∈ M . We have

ϕ1
s (x0) < ϕ2

s (x0).
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It follows that

�(ϕ1
s − ϕ2

s )(x0) = −s2h[eϕ1
s (x0) − eϕ

2
s (x0)] < 0,

since −h > 0 and exponential functions are monotonically increasing. We have arrived
at a contradiction since the Laplacian of a smooth function has to be nonnegative at the
point of minimum value. Therefore, the solution for each s has to be unique.

Following principles of the proof of Lemma 9.3 in [K-W], we show the existence of
solutions by constructing a sub-solution ϕ−,s satisfying

�ϕ−,s − c(s) + s2heϕ−,s ≥ 0,

and a super-solution ϕ+,s satisfying

�ϕ+,s − c(s) + s2heϕ+,s ≤ 0.

The two functions can be constructed independently of s if the techniques from [K-W]
are mimicked entirely. We however, choose pairs of super and sub solutions that converge
to the same function as s → ∞. This construction will be useful in the Main Theorem
3.4, when we study the uniformity and convergent behaviors of ϕs .

Since the function h is smooth and does not vanish, the function log(−h) is smooth
and therefore uniformly bounded on the compact manifold M . Consequentially, there
exists then a constant K > 0 so that

�(− log(−h)) + K ≥ 0,

and

�(− log(−h))− K ≤ 0.

For s large enough so that −K − c(s) ≥ 0, we define

ϕ−,s = log

(−K − c(s)

−s2h

)
. (3.6)

and

ϕ+,s = log

(
K − c(s)

−s2h

)
. (3.7)

We have, for all s,

c(s)− s2heϕ−,s = −K ,

and

c(s)− s2heϕ+,s = K .

One can easily see that

�ϕ−,s = �ϕ+,s = �(− log(−h)),

since − log(−h) is the only non constant part of their definitions on M . By our choice
of K , we have

�ϕ−,s − c(s) + s2heϕ−,s ≥ 0.
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and

�ϕ+,s − c(s) + s2heϕ+,s ≤ 0,

verifying that they are indeed sub and super solutions.
The functions ϕ+,s and ϕ−,s are clearly uniformly bounded. In fact, one can readily

verify that

ϕ+,s − ϕ−,s = log

(
K − c1 + c2s2

−K − c1 + c2s2

)
→ 0,

uniformly as s → ∞.
We are now ready to solve the equation for each s. The solution will be the limit of

certain iterative equations. Pick a constant k > 0 so that

k ≥ sup
s,M

−heϕ+,s ,

and consider the family of operators defined by

Ls = �− s2k I,

where I : M → M is the identity operator. Setting ϕ0,s := ϕ+,s . Since s2k > 0, Ls is
invertible for each s, and we can therefore define the sequence {ϕi,s} inductively by

�ϕi+1,s − s2kϕi+1,s = c(s)− s2kϕi,s − s2heϕi,s . (3.8)

That is, ϕ0,s = ϕi+1,s is the unique solution to the equation

Ls( f ) = c(s)− s2kϕi,s − s2heϕi,s . (3.9)

ϕ+,s is smooth by construction, and so is

c(s)− s2kϕ+,s − s2heϕ+,s .

Schauder’s estimate (cf. section 3 of [K-W]) on elliptic operators Ls then ensures that
ϕ1,s is smooth. By induction and the iterative relation (3.8) above, it follows that all ϕi,s
are smooth. A more crucial observation is that for all i and s, we have the following
monotonic and bounded-ness relation in i :

ϕ−,s ≤ ϕi+1,s ≤ ϕi,s ≤ ϕ+,s (3.10)

This will be proved by induction using the maximum principle of Ls . For i = 1, we
recall that

Ls(ϕ+,s) = �ϕ+,s − s2kϕ+,s ≤ c(s)− s2kϕ+,s − s2heϕ+,s = Ls(ϕ1,s),

and therefore

Ls(ϕ1,s − ϕ+,s) ≥ 0,

which implies ϕ1,s ≤ ϕ+,s by the Maximum Principle 3.1. Suppose now that ϕi,s ≤
ϕi−1,s . Since k > −heϕ+,s by its definition, one can readily compute that
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Ls(ϕi+1,s − ϕi,s)

≥ −s2heϕ+,s
[
eϕi,s−ϕ+,s − eϕi−1,s−ϕ+,s − (ϕi,s − ϕ+,s) + (ϕi−1,s − ϕ+,s)

]

= −s2heϕ+,s
[
F(ϕi,s − ϕ+,s)− F(ϕi−1,s − ϕ+,s)

]
, (3.11)

where

F(x) = ex − x .

F(x) is a decreasing function when x ≤ 0 since

F ′(x) = ex − 1 ≤ 0 ∀x ≤ 0.

Since ϕi,s − ϕ+,s ≤ ϕi−1,s − ϕ+,s ≤ 0 by inductive hypothesis, we conclude that
[
F(ϕi,s − ϕ+,s)− F(ϕi−1,s − ϕ+,s)

] ≥ 0,

making the right hand side of (3.11) nonnegative (recall that −h > 0). This concludes
the inductive step ϕi+1,s ≤ ϕi,s by the maximum principle of Ls . We finally show that

ϕ−,s ≤ ϕi,s ∀ i, s.

This will again be shown by induction. To show thatϕ−,s ≤ ϕ+,s we suppose the contrary,
that

inf
M

{ϕ+,s(x)− ϕ−,s(x)} < 0.

Since ϕ+,s − ϕ−,s is smooth and M is compact, the infimum must be attained at some
point x0 ∈ M . Therefore,

�(ϕ+,s − ϕ−,s)(x0) ≤ −s2h(eϕ+,s (x0) − eϕ−,s (x0)) < 0.

This is a contradiction since the Laplacian of a smooth function must be nonnegative at
the minimum. We conclude that ϕ−,s ≤ ϕ+,s . Now suppose that ϕ−,s ≤ ϕi,s . Identical
computations as in (3.11) yield

Ls(ϕ−,s − ϕi+1,s) ≥ −s2heϕ+,s
[
F(ϕ−,s − ϕ+,s)− F(ϕi,s − ϕ+,s)

]
,

where F(x) = ex − x as above. Since ϕ−,s − ϕ+,s ≤ ϕi,s − ϕ+,s ≤ 0 by inductive
hypothesis, we again have F(ϕ−,s − ϕ+,s) − F(ϕi,s − ϕ+,s) ≥ 0 and therefore have
established the inductive statement. The monotonicity relation (3.10) is established.

Next, we wish to show that for each s, ϕi,s uniformly converge to a smooth function
ϕs . This is a replica of argument from [K-W]. Recall inequality (3.12) from [K-W],
which is a consequence of Sobolev inequality (cf. (3.8) in [K-W]) and the fundamental
elliptic regularity (cf. (3.9) in [K-W]). For p > dim(M) and u ∈ H2,p, we have

‖u‖L∞ + ‖∇u‖L∞ ≤ Cs ‖Lsu‖L p . (3.12)

Also recall that
∥∥Ls(ϕi,s)

∥∥
L p =

∥∥∥c(s)− s2kϕi−1,s − s2heϕi−1,s

∥∥∥
L p
. (3.13)

For a fixed s, (3.10) ensures that the right hand side of (3.13) is uniformly bounded.
Inequality (3.12) then implies that ϕi,s and their first derivatives are uniformly bounded
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in L∞. By the Theorem of Arzela–Ascoli, ϕi,s possesses a subsequence uniformly con-
verging to a function ϕs as i → ∞. The monotonicity of ϕi,s in i implies that the
subsequence is actually the entire sequence.

Moreover, the L p regularity shows that
∥∥ϕi+1,s − ϕ j+1,s

∥∥
H2,p ≤ C

(∥∥∥s2h
∥∥∥

L p

∥∥eϕi,s − eϕ j,s
∥∥

L∞ + ‖k‖L p

∥∥ϕi,s − ϕ j,s
∥∥

L∞
)
.

For a fixed s, the sequence {ϕi,s}i converges in L∞, making the right hand side of the
inequality above Cauchy. The sequence {ϕi,s}i is therefore strongly Cauchy in H2,p,
and therefore strongly convergent. We have arrived at the conclusion that ϕi,s converges
to ϕs in H2,p, a solution to the equation

�ϕs = c(s)− s2heϕs .

Since ϕs ∈ H2,p,�ϕs ∈ H2,p as well since h is smooth. Using Schauder’s estimate (cf.
section 3 of [K-W]), we conclude that ϕs ∈ H4,p. Further bootstrapping of the equation
above implies that ϕs ∈ Hl,p for all l. Since M is compact, it follows that ϕs ∈ Hl,2 for
all l, and is therefore smooth.

This completes the proof of Theorem 3.2 on the existence and uniqueness of the
solutions to the equation. ��

Consequentially, Theorem 2.3 is proved. ��
We now state the Main Theorem, on the bounded-ness and convergence of ϕs . Once

again, this theorem is a general analytic result. The functions and constants here need
not be related to our initial geometric and topological data. We nevertheless use the same
notations for the convenience of application and comparison.

Before stating and proving the Main Theorem, we state the following elementary fact
that follows easily from Hölder’s inequality.

Lemma 3.3 (Convergence of Powers). Given two families of functions { fs} and {gs} on
a bounded domain U ⊂ R

n, such that {gs} are uniformly bounded in L p for all p, and

lim
s→∞ ‖ fs − gs‖L p = 0 ∀ p,

we have

lim
s→∞

∥∥∥ f N
s − gN

s

∥∥∥
L p

= 0 ∀ p.

Here N ∈ N is arbitrary.

Theorem 3.4 (Main Theorem). On a compact Riemannian manifold M without bound-
ary, let c1 be any constant, c2 any positive constant, and h any negative smooth function.
Let c(s) = c1 − c2s2, for each s large enough, the unique solutions ϕs ∈ C∞ for the
equations

�ϕs = c(s)− s2heϕs .

are uniformly bounded in Hl,p for all l ∈ N and p ∈ [1,∞]. Moreover, in the limit
s → ∞, ϕs converges smoothly (i.e. in all Hl,p) to

ϕ∞ = log

(
c2

−h

)
,

the unique solution to

heϕ∞ + c2 = 0.
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Proof. We continue from the proof of the previous theorem. Recall the monotonicity
and bounded-ness of ϕi,s :

ϕ−,s ≤ ϕi,s ≤ ϕ+,s

for all i, s. Passing i → ∞, we have

ϕ−,s ≤ ϕs ≤ ϕ+,s (3.14)

for all s. The functions ϕ−,s and ϕ+,s are again uniformly bounded over s. In fact, one
can observe that

ϕ+,s − ϕ−,s = log

(
K − c1 + c2s2

−K − c1 + c2s2

)
→ 0

in L∞ as s → ∞. With the bounded-ness condition (3.14), we immediately conclude
that

ϕ∞ = lim
s→∞ϕs = lim

s→∞ϕ+,s = lim
s→∞ϕ−,s = log

(−c2

h

)
,

in L∞.
To show the convergence in general Hl,p, we first consider a family of approximated

solutions that converge smoothly to ϕ∞ as s → ∞. Consider

vs := log

(
�(− log(−h))− c(s)

−s2h

)
(3.15)

Since the function inside the logarithm converges smoothly to −c2
h , it is clear that

vs → ϕ∞

smoothly as s → ∞. In fact, since all vs are uniformly bounded, Lemma 3.3 implies
that

vN
s → ϕN∞, (3.16)

smoothly for all N ∈ N as s → ∞. These functions vs are approximated solutions to
the PDE (3.5) in the following sense:

�vs = c(s)− s2hevs + Es,

where

Es = � log

(
�(− log(−h))− c(s)

s2

)
. (3.17)

Without the h in the denominator, the function

log

(
�(− log(−h))− c(s)

s2

)

converge smoothly to a constant as s → ∞ and therefore it is clear that Es → 0
smoothly as s → ∞.

The convergence statement of the theorem then follows from the lemma below:
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Lemma 3.5. For all l ∈ N, we have, with vs and ϕs defined in this theorem, that

lim
s→∞ ‖ϕs − vs‖Hl,∞ = 0.

Proof. (of the Lemma) We perform induction on l. The base case l = 0 has been
established, as both vs and ϕs converge uniformly to ϕ∞ as s → ∞. Before we establish
the inductive step, we first make the following crucial claim.

Claim:

lim
s→∞

∥∥∥s2 (eϕs − evs
)∥∥∥

L∞ = 0 (3.18)

To verify the claim, we start with the difference of the equations satisfied by ϕs and vs :

�(ϕs − vs) = −s2heϕs + s2hevs − Es (3.19)

For each s, since the function ϕs − vs is smooth on the compact manifold M , there is a
point xs ∈ M such that

ϕs(xs)− vs(xs) = sup
x∈M

{ϕs(x)− vs(x)}.

The Laplacian of ϕs − vs must be non-positive at xs , and we have

0 ≥ �(ϕs − vs) (xs) = −s2h(xs)e
ϕs (xs ) + s2h(xs)e

vs (xs ) − Es(xs).

It follows that, for all x ∈ M ,

Es(xs) ≥ −s2h(xs)e
vs (xs )

[
eϕs (xs )−vs (xs ) − 1

]

≥ −s2h(xs)e
vs (xs )

[
eϕs (x)−vs (x) − 1

]

= −s2h(xs)e
vs (xs )e−vs (x)

[
eϕs (x) − evs (x)

]
(3.20)

The second inequality follows from the choice of xs :

ϕs(xs)− vs(xs) ≥ ϕs(x)− vs(x) ∀x ∈ M.

Since the exponential function is monotonically increasing, and that −s2h(xs)evs (xs ) ≥
0, the inequality follows. We therefore arrive at the conclusion

s2
[
eϕs (x) − evs (x)

]
≤ Es(xs)

e−vs (xs )evs (x)

−h(xs)
. (3.21)

Since vs is uniformly convergent, thus bounded, and h(xs) �= 0, the fractional term is
uniformly bounded. Since Es → 0 uniformly, the upper bound we have just obtained
decays to 0 uniformly.

We need a lower bound that uniformly converge to 0. This is constructed using the
same principle, except the special point ys ∈ M is chosen to be the point where the
difference ϕs − vs achieves its infimum:

ϕs(ys)− vs(ys) = inf
x∈M

{ϕs(x)− vs(x)}.
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The Laplacian of ϕs − vs now has to be non-negative at ys , and we have identical chain
of inequalities as in (3.20) in reverse order:

Es(ys) ≤ −s2h(ys)e
vs (ys )

[
eϕs (ys )−vs (ys ) − 1

]

≤ −s2h(ys)e
vs (ys )

[
eϕs (x)−vs (x) − 1

]

= −s2h(ys)e
vs (ys )e−vs (x)

[
eϕs (x) − evs (x)

]
(3.22)

This leads to the desired lower bound

s2
[
eϕs (x) − evs (x)

]
≥ Es(ys)

e−vs (ys )evs (x)

−h(ys)
, (3.23)

which decays to 0 uniformly as s → ∞. The decaying upper bound (3.21) and lower
bound (3.23) verify the claim (3.18).

Inductively, suppose that

lim
s→∞ ‖ϕs − vs‖Hl,∞ = 0.

That is, for any multi-index J such that |J | ≤ l, we have

lim
s→∞

∥∥∥∂ Jϕs − ∂ Jvs

∥∥∥
L∞ = 0.

We wish to establish the convergence to the order l + 1. The proof is substantially
identical to the one for Claim (3.18), despite its involvement of rather tedious and
lengthy bookkeeping of notations. Let I be a multi-index of length l + 1. We apply ∂ I

to (3.19), with caution to the commutation relation between ∂ I and� stated in [V], one
computes

�
(
∂ Iϕs − ∂ I vs

)
=

∑

j∈{I }∪Ml

∑

m j (t)

{[
am j (t)

(
∂ I− j h

) (
∂mi vs

)ti ] s2evs

−
[
am j (t)

(
∂ I− j h

) (
∂miϕs

)ti ] s2eϕs
}

− h
[(
∂ Iϕs

)
s2eϕs −

(
∂ I vs

)
s2evs

]

+
∑

j∈Ml

Q j (Rm)
(
∂ jϕs − ∂ jvs

)
− QI (Rm)

(
∂ Iϕs − ∂ I vs

)
− ∂ I Es . (3.24)

Several notations above require explanations. These are algebraic expressions resulting
from chain rules and product rules of differentiations, and the contributions of curvature
tensors resulted form commuting ∂ I and �. First,

Ml = {r ∈ N
n | |r | ≤ l},

so that j ∈ {I } ∪ Ml means exactly that j = I or some multi-index of length no greater
than l. Each j ∈ {I } ∪ Ml generates a collection of pairs of the form

m j (t) := {(m1, . . . ,mq), (t1, . . . , tq) | mi ∈ N
n, ti ∈ N}

such that |mi | ≤ l and

m1t1 + · · · + mqtq = | j |.
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am(t)’s are then the appropriate combinatorial constants in front of each function when
differentiating the functions evs and eϕs for | j | times. For each j , Q j (Rm) is an algebraic
combination of derivatives of the curvature tensors of (M, g) up to | j |th order, and is
therefore smooth and uniformly bounded. We may combine the Q j (Rm)’s into other
terms in (3.24) and rewrite it into:

�
(
∂ Iϕs − ∂ I vs

)
= −s2heϕs

[
1 − QI (Rm)

s2heϕs

] (
∂ Iϕs − ∂ I vs

)

+
∑

j∈{I }∪Ml

(
A j,s + B j,s

)

+ Cs − ∂ I Es, (3.25)

where

A j,s =
∑

m j (t) �=(( j),(1))

am j (t)

(
∂ I− j h

)

×
[(
∂mi vs

)ti (s2evs − s2eϕs
)

+
((
∂mi vs

)ti − (
∂miϕs

)ti) s2eϕs
]
, (3.26)

B j,s =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
a(( j),(1))

(
∂ I− j h

)− Q j (Rm)
s2evs

]
s2evs

(
∂ jvs

)

−
[
a(( j),(1))

(
∂ I− j h

)− Q j (Rm)
s2eϕs

]
s2eϕs

(
∂ jϕs

) ; j ∈ Ml

0; j = I

and

Cs = −h
(
∂ I vs

) [
s2eϕs

] (
1 − evs−ϕs

)
. (3.27)

One easily observes that for all j ,

lim
s→∞

∥∥∥∥
A j,s

s2

∥∥∥∥
L∞

= lim
s→∞

∥∥∥∥
B j,s

s2

∥∥∥∥
L∞

= lim
s→∞

∥∥∥∥
Cs

s2

∥∥∥∥
L∞

= 0. (3.28)

The decays of
A j,s

s2 and Cs
s2 follow easily from inductive hypothesis (all j are of lengths

no greater than l), Lemma 3.3, Claim (3.18), (3.16), and the facts that vs are uniformly
bounded in all Sobolev spaces and ϕs is uniformly bounded in L∞. These facts also
imply the decay of

B j,s

s2 . Indeed, by Claim (3.18), the smooth function ρ j (s) defined by

ρ j (s) := Q j (Rm)

s2eϕs
− Q j (Rm)

s2evs

decays to 0 in L∞. One can then rewrite

B j,s =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
a(( j),(1))

(
∂ I− j h

)− Q j (Rm)
s2eϕs

]

[(
∂ jϕs

) (
s2evs − s2eϕs

)
+
(
∂ jvs − ∂ jϕs

)
s2evs

]

+ρ j (s)s2evs
(
∂ jvs

) ; j ∈ Ml

0; j = I

and the decay of
B j,s

s2 in L∞ follows.
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We are in the position to re-apply the maximum principle as in the base case |I | = 0.
Let xs ∈ M be the point so that

∂ Iϕs(xs)− ∂ I vs(xs) = sup
x∈M

{∂ Iϕs(x)− ∂ I vs(x)}.

Again, the Laplacian has to be non-positive at xs , and we have, for all x ∈ M , that

0 ≥ �
(
∂ Iϕs − ∂ I vs

)
(xs)

= −s2h(xs)e
ϕs (xs )

[
1 − QI (Rm)

s2heϕs

]
(xs)

(
∂ Iϕs(xs)− ∂ I vs(xs)

)

+
∑

j∈{I }∪Ml

(
A j,s(xs) + B j,s(xs)

)

+ Cs(xs)− ∂ I Es(xs),

≥ −s2h(xs)e
ϕs (xs )

[
1 − QI (Rm)

s2heϕs

]
(xs)

(
∂ Iϕs(x)− ∂ I vs(x)

)

+
∑

j∈{I }∪Ml

(
A j,s(xs) + B j,s(xs)

)

+ Cs(xs)− ∂ I Es(xs), (3.29)

The two expressions before and after the second ≥ are identical except that we replace
xs with x in the difference function ∂ Iϕs − ∂ I vs on the first line after the second ≥. For
large enough s, we have

1 − QI (Rm)

s2heϕs
> 0

on M and we may rearrange the (3.29) without reversing the direction of inequalities:

∂ Iϕs(x)− ∂ I vs(x)

≤ e−ϕs (xs )

h(xs)
[
1− QI (Rm)

s2heϕs

]
(xs)

⎛

⎝
∑

j∈{I }∪Ml

[
A j,s(xs)

s2 +
B j,s(xs)

s2

]
+

Cs(xs)

s2 − ∂
I Es(xs)

s2

⎞

⎠

(3.30)

By (3.28) and the fact that Es → 0 in all Sobolev spaces, the right hand side of this
inequality decays to 0 as s → ∞.

The lower bound for ∂ Iϕs(x)− ∂ I vs(x) is obtained similarly. For each s, there is a
special point ys ∈ M such that

∂ Iϕs(ys)− ∂ I vs(ys) = inf
x∈M

{∂ Iϕs(x)− ∂ I vs(x)}.

The Laplacian of ∂ Iϕs − ∂ I vs has to be non-negative at ys . Using identical arguments
as the ones for upper bound (3.29) in reverse direction, we have, for all x ∈ M , that
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∂ Iϕs(x)− ∂ I vs(x)

≥ e−ϕs (ys )

h(ys)
[
1− QI (Rm)

s2heϕs

]
(ys)

⎛

⎝
∑

j∈{I }∪Ml

[
A j,s(ys)

s2 +
B j,s(ys)

s2

]
+

Cs(ys)

s2 − ∂
I Es(ys)

s2

⎞

⎠

(3.31)

The right hand side again decays to 0 uniformly as s → ∞ with the same arguments
as in (3.30). Inequalities (3.30) and (3.31) establish the inductive step, and the lemma is
therefore proved. ��

With Lemma 3.5 established, the Main Theorem 3.4 follows trivially. Indeed, for all
l, p, we have

∥∥∥∥ϕs − log

(
c2

−h

)∥∥∥∥
Hl,∞

≤ ‖ϕs − vs‖Hl,∞ +

∥∥∥∥vs − log

(
c2

−h

)∥∥∥∥
Hl,∞

and the right hand side converge to 0 as s → ∞. Theorem 3.4 then follows easily from
the continuous embedding

Hl,∞ ↪→ Hl,p

for any l ∈ N and p ∈ [1,∞]. ��

4. Baptista’s Conjecture

We come back to the Riemann surface M = �. The results collected so far prove a
conjecture posed by Baptista [B]. It asserts that the natural L2 metric on νk,0(s), when
pulled back to Holr (�,CP

k−1) via 
s described in Lemma 2.2, evolves to a familiar
one as s → ∞. We prove this claim affirmatively. Throughout this section, we denote z
(and z̄) as the local complex coordinate of�, [z0 : . . . : zk−1] as the local homogeneous
coordinates of CP

k−1, and (w1, . . . , wm) as the local coordinate for Holr
(
�,CP

k−1),
where m = kr − (k − 1)(b − 1), as described in the remarks before Lemma 2.2.

4.1. The evolution of L2 metrics on νk,0(s). We start with the definition of natural
L2 metric on A(H) × �0(L)⊕k , which is a special case of (4) in [B]. At (Ds, φs) ∈
A(H)×�0(L)⊕k , we define

gs(( Ȧs, φ̇s), ( Ȧs, φ̇s)) =
∫

�

1

2s2 Ȧs ∧ ∗̄ Ȧs + 〈φ̇s, φ̇s〉Hvol�. (4.1)

Here, ( Ȧs, φ̇s) denotes a tangent vector in T(Ds ,φs )(A(H) × �0(L)⊕k) � �1(�) ×
�0(L)⊕k . The identification is justified by the fact that �0(L) is a vector space and
A(H) is an affine space modeled on the vector space �1(�), the space of complex
valued one forms on �. (cf. Chapter V of [K]). This identification also justifies the
applications of Hodge star ∗̄ and 〈·, ·〉H in the integrand of (4.1), since ( Ȧs, φ̇s) lies in
essentially isomorphic spaces as (Ds, φs) does. By choosing tangent vectors orthogonal
to G-gauge transformations, (4.1) descends to a well defined metric on the quotient space(
A(H)×�0(L)⊕k

)
/G and restricts to the open subset νk,0(s).

The L2 metric for Holr
(
�,CP

k−1) is also well known, with Fubini-Study metric
endowed on CP

k−1. Given f ∈ Holr (�,CP
k−1), the tangent space of Holr

(
�,CP

k−1)
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at f can be identified with the space of sections of the pullback bundle of T CP
k−1

via f :

T f Holr
(
�,CP

k−1
)

� �( f ∗T CP
k−1).

Given u, v ∈ T f Holr
(
�,CP

k−1), they can be viewed as a pullbacked sections on �,
which can be pushed forward by f to be tangent vectors on CP

k−1, on which Fubini-
Study metric can be applied. We define

〈u, v〉L2 =
∫

�

〈 f∗u, f∗v〉F S vol�. (4.2)

Here, the f∗ denotes the pushforward of f .
Recall the diffeomorphic correspondence in Lemma 2.2


s : Holr
(
�,CP

k−1
)

→ νk,0(s).

We are interested in pulling back gs in (4.1) to Holr (�,CP
k−1) via
s , denoted by g∗

s ,
and comparing it with 〈·, ·〉L2 in (4.2). It was conjectured by Baptista that, roughly, gs
approaches a constant multiple of 〈·, ·〉L2 as s → ∞.

We carefully list the required data to proceed our analysis. Start with a holomorphic
map φ̃ : � → CP

k−1. Equip CP
k−1 with the standard Fubini-Study metric gF S . On the

coordinate chart Ui ⊂ CP
k−1 where zi �= 0, the expression of Kähler form of gF S is

well known:

ωF S =
√−1

2π
∂∂̄ log

(
n∑

l=0

∣∣∣∣
zl

zi

∣∣∣∣
2
)
. (4.3)

This form is also known to be globally defined. There is then a natural Hermitian metric
on O

CP
k−1(1) whose curvature form is a multiple of ωF S . Explicitly, the metric is given

locally at [z0 : . . . : zk−1] ∈ CP
k−1 by

HF S(·) := 1
∑k

i=1 |zi |2
| · |2,

where | · | is the standard Euclidean flat metric in the local trivialization of O
CP

k−1(1)
over Ui . HF S carries the feature that its curvature form FF S satisfies

√−1

2π
FF S = ωF S .

Therefore,

√−1�FF S = 1

2π
(ωF S, ωF S)ωF S = 1

2π
.

See, for example, section 1.2 of [G-H] for more details. ωF S is the generator for
H2(CP

k−1,Z), that is,
∫
CP

k−1 [ωF S]k−1 = 1. In [B], the author used the convention
for the Kähler form ω

CP
k−1 = πωF S , and referred to the normalized form ωF S as

ωnorm F S .
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Recall the pullback construction of the line bundle L , sections φ, and background
Hermitian metric arisen from φ̃, as in Lemma 2.2:

(L , H) (OCP
k−1(1), HF S)

� CP
k−1

�
�̃φ

�
s1,...,sk

where L := φ̃∗O
CP

k−1(1) and H := φ̃∗HF S .
The global hyperplane sections s1, . . . , sk on O

CP
k−1(1) are pulled back to L:

φ := (φi := φ̃∗si )i ,

and φ̃ also defines a holomorphic structure ∂̄L by pulling back the standard complex
structure ∂̄

CP
k−1 on O

CP
k−1(1). By the definition of HF S on O

CP
k−1(1), it is automatic

that

k∑

i=1

|φi |2H = 1. (4.4)

We describe the variations of holomorphic maps and their corresponding pushfor-

wards on νk,0(s). Given ˙̃
φ ∈ Tφ̃Holr (�,CP

k−1) � �(φ̃∗T CP
k−1), we construct a

smoothly varying curve φ̃(t) in Holr (�,CP
k−1) so that φ̃(0) = φ̃ and ∂

∂t |t=0φ̃(t) = ˙̃
φ.

φ̃(t) is locally expressed on Ui as

φ̃(t) =
[
φ̃1(t), . . . , φ̃k(t)

]
. (4.5)

The corresponding family of sections in νk,0(s) are then defined by pulling back the
global sections s1, . . . , sk via φ̃(t):

φt = [
φ1,t , . . . , φk,t

] ∈ �0(L)× · · · ×�0(L), (4.6)

where

φi,t :=
(
φ̃(t)

)∗
(si ).

Taking t-derivatives of φ̃(t)’s at t = 0, we obtain

∂

∂t
|t=0φ̃(t) = ˙̃

φ =
(
∂

∂t
|t=0φ̃1(t), . . . ,

∂

∂t
|t=0φ̃n(t)

)
∈ φ̃∗ (T CP

k−1
)
. (4.7)

To identify the corresponding infinitesimals on T[Ds ,φs ]νk,0(s), we recall the classical
short exact Euler sequence of bundles over CP

k−1, summarized from section 3.3 of
[G-H]:

(4.8)

where O
CP

k−1 is the trivial line bundle. The map ι is obtained by twisting the nat-
ural inclusion O

CP
k−1(−1) ⊂ O⊕k

CP
k−1 with O

CP
k−1(1). For the map E , we take
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σ := (σ1, . . . , σk) ∈ �
(
O

CP
k−1(1)⊕k

)
, z = [z0, . . . , zk−1] ∈ Ui ⊂ CP

k−1, and
Z := (Z0, . . . Zk) ∈ C

k − {0} so that π(Z) = z. Here, π is the natural projection from
C

k − {0} to CP
k−1. We then define

E(σ )|z = π∗

(
∑

i

σi (z)
∂

∂Zi

)
, (4.9)

which is a linear map with kernel

ker E = {a(Z0, . . . , Zk−1) | a ∈ C}.
Indeed, the tangent space TzCP

k−1 is spanned by {π∗ ∂
∂Zi

}k−1
i=0 subject to the relation

∑

i

Zi
∂

∂Zi
= 0.

Setting a = 0, a section of T CP
k−1 is then uniquely associated with a k-tuple of global

sections of O
CP

k−1(1).
Pulling back the Euler sequence (4.8) by φ̃, we obtain a short exact sequence of

bundles over �:

(4.10)

In particular, for ˙̃
φ ∈ �

(
φ̃∗T CP

k−1
)

, the correspondence just discussed associates a

unique k-tuple of global sections on L , denoted by

φ̇ := (
φ̇1, . . . , φ̇k

) ∈ �0(L)⊕k = L⊕k .

The family of holomorphic maps φ̃(t) also defines a family of line bundles over �:

Lt := φ̃(t)∗O
CP

k−1(1).

All bundles are of degree r and therefore isomorphic as complex line bundles. However,
each of them is equipped with its own pullback holomorphic structure:

∂̄Lt := φ̃(t)∗
(
∂̄
CP

k−1

)
.

Clearly

∂̄L = ∂̄L0 .

Each Lt is equipped with a background metric

Ht := φ̃(t)∗HF S

and we denote H := H0.
To analyze g∗

s , we need to compute the pushforward of ˙̃
φ under 
s , denoted by(

Ȧs, φ̇s
)

as in (4.1). For each t , our constructions above clearly imply

∂̄Ltφi,t = 0 ∀t, i.
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By Theorem 2.3, we can then find a unique gauge e2us,t ∈ GC so that
[
D(eus,t ∗∂̄Lt ), eus,tφt

] ∈ νk,0(s),

where D(eus,t ∗∂̄Lt ) is the unique H -unitary connection compatible with the holomorphic
structure ∂̄Lt . (Readers may review Lemma 2.1 for the detailed descriptions.) The map

s is now explicitly written for each t :


s(φ̃(t)) = [
D(eus,t ∗∂̄Lt ), eus,tφt

]
.

Recall the gauge action on holomorphic structures:

eus,t ∗∂̄Lt = eus,t
(
∂̄Le−us,t

) = ∂̄Lt −
(
∂us,t

∂ z̄

)
dz̄,

we have


s(φ̃(t)) = [
D
(
eus,t (∂̄Le−us,t )

)
, eus,tφt

]
, (4.11)

where D
(
eus,t (∂̄Le−us,t )

)
is the Ht -unitary connection with respect to the holomorphic

structure

eus,t
(
∂̄Le−us,t

)
.

At t = 0, the pushforward of ˙̃
φ can now be readily computed:

φ̇s = eus φ̇ + eus u̇sφ, (4.12)

where

u̇s := ∂

∂t
|t=0us,t .

(4.12) makes sense as φ and φ̇ reside in the same space.
Ȧs needs to be computed with caution. Let γ ∈ �0(U, L) be a local holomorphic

frame for L over an open chart U , with respect to the holomorphic structure ∂̄L . The
background Hermitian metric is locally given by a smooth function Ht in this setting.
Altering the holomorphic structure, we observe that the section eus,t γ is the local holo-
morphic frame with respect to the holomorphic structure eus,t (∂̄Le−us,t ). With respect to
this frame, the same background Hermitian metric now has local coordinate description
by the smooth function

H ′
t = Ht e

2us,t .

We then compute the connection form As,t of D(eus,t (∂̄Le−us,t )) using the standard
formula of the local expression of H ′

t -unitary connection forms over U (cf. I.(4.11) in
[K]):

As,t = (H ′
t )

−1∂(H ′
t )

=
(
∂Ht
∂z + 2Ht

∂us,t
∂z

)

Ht
dz

=
[
∂

∂z
(log Ht ) + 2

∂us,t

∂z

]
dz. (4.13)
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We differentiate As,t with respect to t and evaluating it at t = 0 to obtain Ȧs :

Ȧs := ∂

∂t
|t=0 As,t = ∂

∂z

(
Ḣ

H

)
+ 2

∂ u̇s

∂z
dz, . (4.14)

where

Ḣ := ∂

∂t
|t=0 Ht .

We have now identified the pushforward of the ˙̃
φ under 
s :


s,∗
( ˙̃
φ
)

= (
Ȧs, φ̇s

)

=
(
∂

∂z

(
Ḣ

H

)
+ 2

∂ u̇s

∂z
dz, eus φ̇ + eus u̇sφ

)
∈ T[Ds ,φs ]νk,0(s) (4.15)

By the definition of pullback metric, we then have

g∗
s

( ˙̃
φ,

˙̃
φ
)

:= gs

(

s,∗

( ˙̃
φ
)
,
s,∗

( ˙̃
φ
))

=
∫

�

⎛

⎜⎝

∣∣∣ ∂∂z

(
Ḣ
H

)
+ 2 ∂ u̇s

∂z

∣∣∣
2

2s2 +
〈
φ̇, φ̇

〉
H e2us +

(
eus u̇s

)2
⎞

⎟⎠ vol�, (4.16)

This quantity is a real number since z, the coordinate of�, is eliminated after integration
over �. The second equality above relies the relation (4.4), which implies

〈
φ, φ̇

〉
H = 0

and 〈φ, φ〉H = 1. One should expect the first and third terms in (4.16) to vanish as
s → ∞, and the second term to approach a multiple of square norm of φ̇. Namely, we
expect (4.16) to approach (a multiple of) < ·, · >L2 defined in (4.2). This is precisely
the statement in the Baptista’s Conjecture in [B].

Conjecture 4.1 (Baptista’s Conjecture). On Holr (�,CP
k−1) � νk,0(s), g∗

s defined in
(4.16) converges smoothly, as s → ∞, to a multiple of the ordinary L2 metric< ·, · >L2

defined in (4.2) on Holr (�,CP
k−1).

To achieve higher mathematical precision, we state the following notion of conver-
gence.

Definition 4.2 (Cheeger–Gromov Convergence). For all l ∈ N and p ≥ 1, a family of
n-dimensional Riemannian manifolds (Ms, gs) is said to converge to a fixed Riemannian
manifold (M, g) in Hl,p, in the sense of Cheeger–Gromov, if there is a covering chart
{Uk, (xk

i )} on M and a family of diffeomorphisms Fs : M → Ms, such that

∥∥∥∥F∗
s (gs)(

∂

∂xi
,
∂

∂x j
)− g(

∂

∂xi
,
∂

∂x j
)

∥∥∥∥
Hl,p(Uk )

→ 0. (4.17)

as s → ∞, for all k and i, j ∈ {1, . . . , n}.
We state Baptista’s Conjecture in this level of mathematical rigor:



196 C.-C. Liu

Proposition 4.3 (Precise Baptista’s Conjecture). Equipping CP
k−1 with the Fubini-

Study metric, the sequence of metrics gs on νk,0(s) given by (4.1) converges in all Hl,p

(and so smoothly), in the sense of Cheeger-Gromov, to 1
2 times the L2 metric 〈·, ·〉L2

on Holr (�,CP
k−1) given by (4.2). The family of diffeomorphisms are precisely 
s , as

constructed in Lemma 2.2.

Proof. Throughout the proof, we use the following abbreviations for the initial value
and variation of a family of functions ft with parameter t :

f := f0,

and

ḟ := ∂

∂t
|t=0 ft .

We first recall that for each t , the k-sections φt give rise to the function

ht = −e2ψt

k∑

i=1

|φi,t |2Ht
(4.18)

as in (3.3) and (3.5) of Sect. 3, where

�ψt = √−1�FHt − c1.

However, since φt and Ht are pullbacked from the sections s1, . . . , sk on O
CP

k−1(1)

with constant HF S norm of 1, it is clear that
∑k

i=1 |φi,t |2Ht
= 1 ∀t , and

ht = −e2ψt .

For each t , recall the relation of us,t and ϕs,t :

ϕs,t = 2(us,t − ψt ).

It follows that e2us,t = −ht eϕs,t and

∂ u̇s

∂z
= 1

2

(
∂ϕ̇s

∂z
+ 2

∂ψ̇

∂z

)
.

The pullback metric g∗
s (4.16) can be rewritten as

g∗
s

( ˙̃
φ,

˙̃
φ
)

=
∫

�

⎛

⎜⎝

∣∣∣ ∂∂z

(
Ḣ
H

)
+ ∂ϕ̇s
∂z + 2 ∂ψ̇

∂z

∣∣∣
2

2s2 +
〈
φ̇, φ̇

〉
H

(−heϕs
)− 1

2
˙(

he2ϕs
)
(u̇s)

⎞

⎟⎠ vol�

(4.19)

The dot over −he2ϕs above is applied to the entire product. It is also evident from our
constructions that

〈
φ̇, φ̇

〉
H =

〈 ˙̃
φ,

˙̃
φ
〉

HF S
.
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We now allow φ̃ to vary freely on Holr
(
�,CP

k−1). Each φ̃ ∈ Holr
(
�,CP

k−1) deter-
mines corresponding Hermitian structures and functions Hφ̃ , hφ̃ , ψφ̃, us,φ̃ , and ϕφ̃
on �, as in the constructions in Sect. 3. The subscripts did not appear there since we
fixed a holomorphic function to begin the entire argument. To emphasize the variation
on Holr

(
�,CP

k−1) in the present situation, we amend the notations of the functions
discussed in Sect. 3:

H̃ , h̃, ψ̃, ũs, ϕ̃s : Holr
(
�,CP

k−1
)

×� → R,

so that H̃(φ̃, z) = Hφ̃(z) and similarly for other functions. These functions are all
smooth, as their dependencies on holomorphic maps are smooth.

Before establishing the convergence, we note that it is sufficient to prove the conver-
gence of g∗

s in a coordinate neighborhood U of φ̃, as Cheeger-Gromov convergence is a
local statement. Moreover, using polarizing identity of the Hermitian structure, it is suf-
ficient to establish the convergence (4.17) for some i = j . Fix a precompact coordinate
patch U ⊂ Holr

(
�,CP

k−1) with coordinates (w1, . . . , wm) centered at φ̃. We remind
the readers that the coordinate description of Holr

(
�,CP

k−1) is given in the remark
immediately before Lemma 2.2. Let

(ξ1, . . . , ξm)

be the coordinate local frame of T Holr
(
�,CP

k−1) over U so that for all f ∈
C∞(Holr

(
�,CP

k−1)) and all η̃ ∈ U ,

ξi (η̃)( f ) = ∂

∂wi
|η̃ f.

Setting ˙̃
φ = ξi in (4.19) then defines a real smooth function on U . Precisely, at η̃ ∈ U ,

we define

Fi
s (η̃) := g∗

s (ξi (η̃), ξi (η̃))

=
∫

�

⎡

⎢⎣

∣∣∣ ∂∂z

(
∂
∂wi

|η̃ log H̃
)

+ ∂
∂z

(
∂
∂wi

|η̃ϕ̃s

)
+ 2 ∂

∂z

(
∂
∂wi

|η̃ψ̃
)∣∣∣

2

2s2

⎤

⎥⎦ vol�

+
∫

�

[
〈ξi (η̃), ξi (η̃)〉HF S

[
−h̃(η̃, z)

]
eφ̃s (η̃,z)

]

− 1

2

∫

�

(
∂

∂wi
|η̃h̃e2ϕ̃s

)(
∂

∂wi
|η̃ũs

)
vol�. (4.20)

Once again, the z variable is integrated out on the right hand side and Fi
s is solely a

function on U .
The derivatives of Fi

s can be computed accordingly. For a multi-index R ∈ N
m , we

may compute

∂ R Fi
s .

Here, as usual, the multi-index convention is adopted. For R = (r1, . . . , rm),

∂ R := ∂r1 · · · ∂rm

∂w
r1
1 · · · ∂wrm

m
.
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In this section, we reserve this notation for differentiations on coordinates of U only.
Since all functions in the integrand of (4.20) are smooth, we may interchange ∂ R with
the integration:

∂ R Fi
s (η̃) =

∫

�

∂ R |(η̃,z)
∣∣∣ ∂∂z

(
∂
∂wi

log H̃
)

+ ∂
∂z

∂
∂wi
ϕ̃s − 2 ∂

∂z

(
∂
∂wi
ψ̃
)∣∣∣

2

2s2 vol�

+
∫

�

[[
∂ R 〈ξi , ξi 〉HF S

] (
−h̃e2ϕ̃s

)]
(η̃,z)vol�

−
∫

�

∑

α∈{R}∪M R

[
Aα∂

α
(

h̃eϕ̃s
)

BR−α
]
(η̃,z)vol�.

− 1

2

∫

�

∂ R |(η̃,z)
[(

∂

∂wi
h̃e2ϕ̃s

)(
∂

∂wi
ũs

)]
(4.21)

Here, again, M R is the set of all multi-indices with lengths less than |R|, as defined in
the proof of Lemma 3.5. BR−α are smooth functions defined by

BR−α = ∂ R−α 〈ξi , ξi 〉HF S
,

which are independent of s. Aα’s are constants. From the expression of (4.21), the
conclusion of Proposition 4.3 then holds true on U once we verify the following three
conditions for all multi-index R and all η̃ ∈ U :

lim
s→∞

∥∥∥∥∥∥∥

∂ R |(η̃,z)
∣∣∣ ∂∂z

(
∂
∂wi

log H̃
)

+ ∂
∂z

∂
∂wi
ϕ̃s − 2 ∂

∂z

(
∂
∂wi
ψ̃
)∣∣∣

2

2s2

∥∥∥∥∥∥∥
L∞(�)

= 0; (4.22)

lim
s→∞

∥∥∥∂α
(

h̃e2ϕ̃s
)∥∥∥

L∞(�)
= 0 ∀α such that 1 ≤ |α| ≤ |R|; (4.23)

and

− h̃eϕ̃s |(η̃,z) → 1

2
in L∞(�) as s → ∞. (4.24)

Here, ‖ · ‖L∞(�) denotes the L∞ norm of the space of uniformly bounded functions on
�, where� is amended to emphasize the fact that after evaluating the three expressions
above at a particular point η̃ ∈ U , they are functions solely on�. (4.24) follows directly
from the Main Theorem 3.4. To verify the other two claims, we similarly define the
approximated solutions ṽs and error Ẽs on U ×� as in the proof of the Main Theorem
3.4:

ṽs := log

⎛

⎝
��

(
− log(−h̃)

)
− c(s)

−s2h̃

⎞

⎠ (4.25)

with error

Ẽs := �� log

⎛

⎝
��

(
− log(−h̃)

)
− c(s)

s2

⎞

⎠ (4.26)
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so that

��ṽs + s2h̃eṽs − c(s) = Ẽs .

Here, �� denotes the Laplacian with respect to coordinates of � only and c(s) =
2c1 − 1

2 s2 as in the beginning of Sect. 3. One can readily see that for all R ∈ N
m and

η̃ ∈ U ,
∥∥∥∂ R |(η̃,z)ṽs

∥∥∥
Hl,∞(�)

≤ CR < ∞ ∀ s, (4.27)

lim
s→∞

∥∥∥∂α|(η̃,z)
(

h̃eṽs
)∥∥∥

L∞(�)
= 0 ∀α such that 1 ≤ |α| ≤ |R|, (4.28)

−h̃eṽs |(η̃,z) → 1

2
in L∞(�) as s → ∞, (4.29)

and

lim
s→∞

∥∥∥∂ R |(η̃,z) Ẽs

∥∥∥
Hl,∞(�)

= 0, (4.30)

∀l ∈ N, where we again use the amended notation Hl,∞(�) to denote the space of
functions on�with uniformly bounded derivatives up to lth order. All claims follow from
direct computations of derivatives. To bound ∂ R |(η̃,z)ṽs , we observe that the argument
of log in (4.25)

��

(
− log(−h̃)

)
− 2c1 + 1

2 s2

−s2h̃

= 1

−2h̃
− 1

s2

⎡

⎣
��

(
− log(−h̃)

)
− 2c1h̃

h̃

⎤

⎦

is a smooth function function on � at any η̃ ∈ U and for any R ∈ N
m ,

∂ R |(η̃,z)
⎡

⎣
��

(
− log(−h̃)

)
− 2c1 + 1

2 s2

−s2h̃

⎤

⎦

= ∂ R |(η̃,z)
(

1

−2h̃

)
− 1

s2 ∂
R |(η̃,z)

⎡

⎣
��

(
− log(−h̃)

)
− 2c1h̃

h̃

⎤

⎦ .

Both terms in this expression are clearly smooth on � and the factor 1
s2 of the second

term, the only appearance of s, makes all its z-derivatives uniformly bounded, verifying
(4.27). For (4.28), we simply observe that

−h̃eṽs = 1

2
+
��

(
− log(−h̃)

)
− 2c1

−s2 → 1

2

and ∀α such that 1 ≤ |α| ≤ |R|,

∂ R |(η̃,z)
(

h̃eṽs
)

= −
∂ R |(η̃,z)��

(
− log

(
h̃
))

s2 → 0
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uniformly as s → ∞. Constants are eliminated since |α| ≥ 1. These observations easily
verify (4.28) and (4.29). Lastly, we observe that the argument of log in (4.26)

��

(
− log

(
h̃
))

− c1 + 1
2 s2

s2

= 1

2
− 1

s2

[
��

(
− log

(
h̃
))

− c1

]

which clearly approaches 1
2 in all Hl,∞(U ×�) as s → ∞. It then follows that Ẽs → 0

in all Hl,∞(U ×�) and (4.30) follows.
From (4.27)–(4.30), we see that (4.22)–(4.24), the three sufficient conditions for

proving Proposition 4.3, are true if ϕ̃s is replaced by ṽs . Therefore, it remains to show
that at every η̃ ∈ U , the difference of ∂ R |(η̃,z)ϕ̃s and ∂ R |(η̃,z)ṽs converges to 0 in H1,∞(�)
for all R ∈ N

m .

Lemma 4.4. For all multi-indices R, and l ∈ N, we have

lim
s→∞

∥∥∥∂ R |η̃ṽs − ∂ R |η̃ϕ̃s

∥∥∥
H1,p(�)

= 0,

∀η̃ ∈ U ⊂ Holr
(
�,CP

k−1). Here, ∂ R is the Rth derivative with respect to coordinates
(w1, . . . , wm) on U .

Proof. We need to prove that for all R ∈ N
m and η̃ ∈ U ,

lim
s→∞

∥∥∥∂ R |(η̃,z)ϕ̃s − ∂ R |(η̃,z)ṽs

∥∥∥
L∞(�)

= 0 (4.31)

and

lim
s→∞

∥∥∥∥∂
R |(η̃,z) ∂ϕ̃s

∂z
− ∂ R |(η̃,z) ∂ṽs

∂z

∥∥∥∥
L∞(�)

= 0. (4.32)

The proof is essentially a repetition of that of Lemma 3.5. We start with the difference
of Laplacians of the quantities we wish to bound:

�� (ϕ̃s − ṽs) = −s2h̃eϕ̃s + s2h̃eṽs − Ẽs (4.33)

and

��

(
∂ϕ̃s

∂z
− ∂ṽs

∂z

)
= −s2 ∂ h̃

∂z
eϕ̃s + s2 ∂ h̃

∂z
eṽs − ∂ Ẽs

∂z

+ s2h̃
∂ṽs

∂z
eṽs − s2h̃

∂ϕ̃s

∂z
eṽs + Q(z)

(
∂ϕ̃s

∂z
− ∂ṽs

∂z

)
, (4.34)

where Q(z) is a smooth function on� arisen from the Riemannian curvature tensors on
� and their derivatives. It is in particular independent of coordinates of U . Similar to the
proof of Lemma 3.5, we apply ∂ R |(η̃,z) to (4.33) and (4.34) above, follow by induction
on |R| and arguments from the maximum principle.

For |R| = 0, no derivative on coordinates of U is taken. (4.31) and (4.32) are merely
special cases of Lemma 3.5 with l = 1, as the holomorphic map chosen there is arbitrary
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as well. Suppose that (4.31) and (4.32) hold for |R| ≤ l. The inductive step, as in the
proof of Lemma 3.5, is established from the following crucial claim:

lim
s→∞

∥∥∥s2
(

eϕ̃s (η̃,z) − eṽs (η̃,z)
)∥∥∥

L∞(�)
= 0 ∀η̃ ∈ U . (4.35)

This is simply a claim that the Claim (3.18) holds for every smooth function ϕ̃s(η̃, z)
and ṽs(η̃, z) induced from η̃ ∈ U , which is indeed true as the smooth functions in Sect.
3 are all induced from an arbitrary holomorphic map.

(4.31) is almost an identical statement to Lemma 3.5 with the multi-index I replaced
by R. That is, the derivatives are taken with respect to coordinates of U instead of �.
This replacement actually simplifies the computation considerably as ∂ R and �� are
independently defined on the separate components of U × � and therefore commute.
Consequentially, the curvature terms Q j (Rm)’s in the proof of Lemma 3.5 do not appear
here when commuting ∂ R and �� . With this liberty at hand, we readily compute

��

(
∂ R |(η̃,z)ϕ̃s − ∂ R |(η̃,z)ṽs

)

= −s2h̃
(
∂ R |(η̃,z)ϕ̃s − ∂ R |(η̃,z)ṽs

)
+

∑

j∈{R}∪Ml

(
Ã j,s + B̃ j,s

)
|(η̃,z)

+ C̃s(η̃, z)− ∂ R |(η̃,z) Ẽs . (4.36)

Here, the smooth functions Ã j,s, B̃ j,s, C̃s , and index set Ml are all defined identically
as A j,s, B j,s, Cs , and Ml in the proof of Lemma 3.5, with h, vs, ϕs , and Q j (Rm)’s
replaced by h̃, ṽs, ϕ̃s , and 0, respectively. Claim (4.35) and inductive hypothesis are
then applied identically to obtain the follow decay conditions:

lim
s→∞

∥∥∥∥∥
Ã j,s(η̃, z)

s2

∥∥∥∥∥
L∞(�)

= lim
s→∞

∥∥∥∥∥
B̃ j,s(η̃, z)

s2

∥∥∥∥∥
L∞(�)

= lim
s→∞

∥∥∥∥∥
C̃s(η̃, z)

s2

∥∥∥∥∥
L∞(�)

= 0

(4.37)

Maximum principle is then identically applied. Namely, for each η̃ and s, there exist
x η̃s , yη̃s ∈ � such that for all z ∈ �,

∂ R |(η̃,z)ϕ̃s − ∂ R |(η̃,z)ṽs

≤ e−ϕ̃s

h̃

⎛

⎝
∑

j∈{I }∪Ml

[
Ã j,s

s2 +
B̃ j,s

s2

]
+

C̃s

s2 − ∂ R Ẽs

s2

⎞

⎠
(η̃,x η̃s )

, (4.38)

and

∂ R |(η̃,z)ϕ̃s − ∂ R |(η̃,z)ṽs

≥ e−ϕ̃s

h̃

⎛

⎝
∑

j∈{I }∪Ml

[
Ã j,s

s2 +
B̃ j,s

s2

]
+

C̃s

s2 − ∂ R Ẽs

s2

⎞

⎠
(η̃,yη̃s )

. (4.39)

(4.30) and (4.37) then imply that the right hand sides of (4.38) and (4.39) decay to 0
uniformly as s → ∞, verifying (4.31).
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The uniform decay (4.32) is obtained similarly despite its more tedious and lengthy
computations. With the case |R| = 0 verified and |R| ≤ l assumed, we aim to prove
(4.32) for an arbitrary R ∈ N

m with |R| = l + 1. Applying ∂ R |(η̃,z) to both sides of
(4.34) we obtain

��

(
∂ R |(η̃,z) ∂ϕ̃s

∂z
− ∂ R |(η̃,z) ∂ṽs

∂z

)

= −h̃

[(
∂ R |(η̃,z) ∂ϕ̃s

∂z

)
s2eϕ̃s −

(
∂ R |(η̃,z) ∂ṽs

∂z
s2eṽs

)]
(η̃,z)

− s2h̃eϕ̃s

[
2 − Q(z)

s2h̃eϕ̃s

](
∂ R ∂ϕ̃s

∂z
− ∂ R ∂ṽs

∂z

)
(η̃,z)

+
∑

j∈{R}∪Ml

Â j,s(η̃, z)+
∑

j∈∪Ml

B̂ j,s(η̃, z)+Ĉs(η̃, z)+ D̂s(η̃, z)−h̃ρ̂(s)∂ R ∂ṽs

∂z (η̃,z),

(4.40)

where

Â j,s =
∑

m j (t) �=(( j),(1))

[
am j (t)∂

R− j

(
h̃
∂ṽs

∂z
+
∂ h̃

∂z

)(
∂mi

∂ṽs

∂z

)ti
]

s2eṽs

−
[

am j (t)∂
R− j

(
h̃
∂ϕ̃s

∂z
+
∂ h̃

∂z

)(
∂mi

∂ϕ̃s

∂z

)ti
]

s2eϕ̃s , (4.41)

B̂ j,s =
∑

j∈Ml

a(( j),(1))

[
∂ R− j h̃

(
∂ j ∂ṽs

∂z

)]
s2eṽs −a(( j),(1))

[
∂ R− j h̃

(
∂ j ∂ϕ̃s

∂z

)]
s2eϕ̃s ,

(4.42)

Ĉs = −s2h̃eϕ̃s
(

1 − eṽs−ϕ̃s
)
∂ R
(
∂ṽs

∂z

)
, (4.43)

D̂s = −∂ h̃

∂z

[(
∂ R ϕ̃s

)
s2eϕ̃s −

(
∂ R ṽs

)
s2eṽs

]
, (4.44)

and

ρ̂(s) → 0 in L∞(�) as s → ∞. (4.45)

The inductive hypothesis, (4.27), and (4.35) again form the required decaying conditions
on all the functions on the last line of (4.40) for us to apply the maximum principle:

lim
s→∞

∥∥∥∥∥
Â j,s(η̃, z)

s2

∥∥∥∥∥
L∞(�)

= lim
s→∞

∥∥∥∥∥
B̂ j,s(η̃, z)

s2

∥∥∥∥∥
L∞(�)

= lim
s→∞

∥∥∥∥∥
Ĉs(η̃, z)

s2

∥∥∥∥∥
L∞(�)

= lim
s→∞

∥∥∥∥∥
D̂s(η̃, z)

s2

∥∥∥∥∥
L∞(�)

= lim
s→∞

∥∥∥∥∥
h̃ρ̂(s)∂ R ∂ṽs

∂z

s2 (η̃,z)

∥∥∥∥∥
L∞(�)

= 0 (4.46)
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for all η̃ ∈ U . The maximum principle of�� then guarantees the existences of x η̃s , yη̃s ∈
� so that for all z ∈ �, we have

∂ R |(η̃,z) ∂ϕ̃s

∂z
− ∂ R |(η̃,z) ∂ṽs

∂z

≤
⎛

⎝ e−ϕ̃s

−h̃
[
2− Q

s2 h̃eϕ̃s

]

⎡

⎣
∑

j∈{R}∪Ml

Â j,s

s2 +
∑

j∈Ml

B̂ j,s

s2 +
Ĉs

s2 +
D̂s

s2 −
h̃ρ(s)∂ R

(
∂ṽs
s2

)

s2

⎤

⎦

⎞

⎠
(η̃,x η̃s )

(4.47)

and

∂ R |(η̃,z) ∂ϕ̃s

∂z
− ∂ R |(η̃,z) ∂ṽs

∂z

≥
⎛

⎝ e−ϕ̃s

−h̃
[
2− Q

s2 h̃eϕ̃s

]

⎡

⎣
∑

j∈{R}∪Ml

Â j,s

s2 +
∑

j∈Ml

B̂ j,s

s2 +
Ĉs

s2 +
D̂s

s2 −
h̃ρ(s)∂ R

(
∂ṽs
∂z

)

s2

⎤

⎦

⎞

⎠
(η̃,yη̃s )

.

(4.48)

It then follows from (4.46) that the right hand sides of (4.47) and (4.48) decay to 0 in
L∞(�), proving our remaining claim (4.32). ��

We have proved, that on the coordinate patch U ⊂ Holr
(
�,CP

k−1), the function

∂ R Fi
s = ∂ Rg∗

s

(
∂

∂wi
,
∂

∂wi

)

converges pointwise to the smooth function

∫

�

1

2

[
∂ R
〈
∂

∂wi
,
∂

∂wi

〉

HF S

]
= 1

2
∂ R
∫

�

〈
∂

∂wi
,
∂

∂wi

〉

HF S

,

for all multi-index R ∈ N
m as s → ∞. All functions ∂ R Fi

s and the limiting function are
bounded on U and therefore admit smooth extensions to the compact set Ū . Since the
limiting function is smooth, it follows that the functions ∂ R Fi

s converge uniformly to

1

2
∂ R
∫

�

〈
∂

∂wi
,
∂

∂wi

〉

HF S

,

on Ū which proves the smooth convergence of g∗
s to a multiple of 〈·, ·〉L2 on U . This

completes the proof of Proposition 4.3. ��
Proposition 4.3 provides a plausible approach to prove Conjecture 5.3 in [B], which

conjectures a formula of the volume of Holr
(
�,CP

k−1) with respect to 〈·, ·〉L2 . The
volume of νk(s) with respect to gs has been explicitly computed [B] (see Theorem 5.1
there). In the notations we use in this paper, the formula is

V olνk(s) =
b∑

i=0

b!kb−i

i !(q − i)!(b − i)!
(

4π

s2

)i (
V ol� − 4π

s2 r

)q−i

, (4.49)
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where

q = b + k(r + 1 − b)− 1.

(4.49) is off by a factor ofπq from [B], as we adopt the normalized Kähler formωF S here.
Also, we have 4π here, instead of 2π , as the adiabatic parameter s2 here corresponds
to 2e2 in [B]. Since νk,0(s) is an open dense subset of νk(s), for s < ∞, (4.49) is also
a formula V olνk,0(s). Since 
∞ : νk,0(∞) → Holr

(
�,CP

k−1) is an isometry by
Proposition (4.3), letting s → ∞ in (4.49) formally yields a conjectural formula for the
volume of Holr

(
�,CP

k−1):

V ol Holr
(
�,CP

k−1
)

= kb

q! (V ol�)q . (4.50)

This formula has been verified in [Sp] for the case b = 0 and r = 1 using entirely
independent techniques that are quite special to this given case. It is valid in general if
(4.49) is true for s = ∞. One however, needs to confirm that the L2 volume of νk(s)
does not concentrate around νk(s) − νk,0(s) so that (4.50) is equal to lims→∞ νk(s).
The affirmation is not immediate, as sketched in the next section, that analytic defect
appears on sections with common zeros which is also exhibited by the loss of topological
invariants. It is author’s great interest to confirm that the singularities of L2 metrics on
νk(s) produced as s → ∞ does not impact the continuity of (4.49) in s and the plausible
argument above is indeed valid.

5. Failure of the Results from Common Zeros and Bubbling

We have restricted our discussion to the open subset νk,0(s) of νk(s) where sections do
not vanish simultaneously. This leads to the non-vanishing of the function h, allowing
us to pick the constant K ∈ R to control the smooth function �(− log(−h)) (see the
proof of Theorem 3.2 and Theorem 3.4). When k sections do have common zeros, the
function h vanishes at the common zeros and the function �(− log(−h)) is no longer
smooth and bounded. It is therefore no longer possible to pick such K to bound ϕ+,s and
ϕ−,s . Without this vital condition, Main Theorem 3.4 does not hold and it is not possible
to obtain convergent behaviors of the functions us .

Although it is still possible to obtain the super and sub solutions for each s in the
proof of Theorem 3.2 following the choices of ϕ+,s and ϕ−,s in [K-W], where s = 1,
these functions will not be uniformly bounded. Their L∞ norms grow like s2, failing to
satisfy the crucial condition of the Main Theorem on the uniform bounds of ϕs .

In fact, when sections do have common zeros, convergence of the family of solutions
of vortex equations (1.2) to those of (1.3) contradicts the topological constraint of the line
bundle L . An easy example can be observed for single section vortices k = 1. At s = ∞,
equation (1.3) indicates that the section never vanishes on �, which is impossible for
line bundle of positive degree. However, as we have seen from the constructions in Sect.
3, values of s correspond to various gauge classes of connections and sections, which
do not alter the topological structure of L . Analytically, the equation for ϕ∞, namely
heϕ∞ + c2 = 0, can never be true unless h contains singular points. Consequentially, the
density for Yang–Mills–Higgs functional is expected to blow up at the common zeros of
the sections, even though the energy functional stays bounded. One can certainly remedy
this setback by defining some smooth extension of the vortices across the singularities.
However, it is then necessary to sacrifice some topological data form our initial setting.
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This phenomenon is known as the “bubbling” of vortices. Descriptions of the bubbles, as
well as the leftover bundles, have been thoroughly described in [C-G-R-S,O,Wo,X,Z]
in more general settings of symplectic vortex equations.

6. Remarks on Possible Generalizations

At the time of submission of this article, a more generalized version of Baptista’s con-
jecture is posed in [B1]. The conjecture is similar, except that the Riemann surface �
is replaced by an arbitrary compact Kähler manifold and CP

k−1 is replaced with a toric
manifold. The analog of Holr

(
�,CP

k−1) there (with naturally defined L2 metric) holo-
morphically embeds into the analog of νk(s) there, and it is conjectured that as s → ∞
the embedding is isometric. As our Main Theorem does not restrict the dimension of the
manifold, it is then natural to attempt to generalize our results to this setting.

Another possible generalization is to allow certain singularities on the Hermitian
metrics. In [D], several regularity results are available for the types of elliptic PDEs
considered in Sect. 3, with background metric possessing conic singularities. It suggests
possible generalization to our Main Theorem for the negative function h with conic
singularities. Such a result might possibly provide a more precise analytic picture on the
bubbling phenomenon.

The author is eager to explore any possibility toward these two directions of gener-
alizations.
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