Names and Student IDs: \qquad

Homework 3 Calculus 2

1. Salas § 8.6, Problem 29
2. (a) Given $\lambda \in(0,1)$, prove that $h: \mathbb{R}^{+} \rightarrow \mathbb{R}$ defined by $h(t)=t^{\lambda}-\lambda t$ has absolute maximum at $t=1$. What is the maximum value?
(b) With part (a), do Rudin Chapter 6, Problem 10 (a),(b). Here, change all α to x (ie. we deal with usual Riemann integrals here).
3. Salas § 8.6, Problem 43.
4. Continue from Problem 2, prove
(a) For any $f, g \in \mathcal{R}([a, b])$, we have

$$
\left|\int_{a}^{b} f g d x\right| \leq\left(\int_{a}^{b}|f|^{p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b}|g|^{q} d x\right)^{\frac{1}{q}}
$$

(b) The equality hold if and only if $f=c g$ for some $c \neq 0$.
5. Prove that

$$
\binom{n}{k}=\left[(n+1) \int_{0}^{1} x^{k}(1-x)^{n-k} d x .\right]^{-1}
$$

6. Rudin Chapter 6 Problem 15 (Hint: Use Problem 2, 4). For the strict inequality $>$, just prove \geq.
7. Salas § 8.5: 2, 6, 15, 22, 28.
8. Salas § 8.6: 2, 12.
9. Salas § 8.7: 5, 9, 12.
10. Salas § 11.7: 4, 18, 25, 30, 32, 39, 54, 58, 66, 67.
11. (5 points extra credit) For Problem 6, prove that the inequality is actually strict.
