Note 4.1 - Related Rates and Differentials

1 Introduction

We apply chain rules/implicit differentiations and linear approximations to some practical problems.

2 Related Rates

In many situations, there are quantities, related by equation(s), depend upon each other:

$$
F(x, y)=0
$$

It can be mathematically unclear to tell which one is independent variable or dependent variable (i.e. the function). They can also be functions of another variable (the parameter) as well:

$$
F(x(t), y(t))=0 .
$$

In any case, we are interested to see how a certain variable varies with respect to one of the other variables or parameters. This is done by implicit differentiation.

3 Differentials

We have discussed how differentiations are interpreted as linear approximations.

Now we use them to approximate some numerical values of functions:

The tangent lines are also quick tools to estimate the change of function value:

$$
\Delta f:=f(x+\Delta x)-f(x)
$$

These are often used to estimate the errors of some quantities:

