Note 5.2 - The Fundamental Theorem of Calculus

1 Introduction

The motivation to study the fundamental theorem is probably to compute integration. But the theorem itself is probably the most important and fundamental fact to know in calculus.

2 The Area Functions

Given an continuous function f(x) and some $a \in \mathbb{R}$, we know that $\int_a^x f(x) dx$ is always defined for $x \ge a$. For x < a, we define

$$\int_a^x f(x) \, dx := -\int_x^a f(x) \, dx.$$

This gives us a well-defined $area \ function$

$$F(x) = \int_{a}^{x} f(x) \ dx$$

on $\mathbb R.$ We have the following properties that follows directly from definition of $F\colon$

If we can explicitly find this function F, the tedious computations in Note 5.1 become much simpler:

So how to find this F?

3 The Fundamental Theorem of Calculus

We now come to the most important theorem of the entire course: finding the relationship between F and f described above.

Theorem 3.1 (Fundamental Theorem of Calculus FTC). Given a continuous function f and

$$F(x) := \int_{s}^{x} f(t) dt$$

for some $s \in \mathbb{R}$, then

- F is differentiable and F' = f
 - $\int_{a}^{b} f(x) \, dx = F(b) F(a).$

So this gives us much more clues on how to find F. We will derive (more precisely, guess) some formula in the next note.

Here is a more general form of FTC:

Theorem 3.2 (Generalized Fundamental Theorem of Calculus). Given a continuous function f and differentiable functions g, h, let

$$F(x) = \int_{h(x)}^{g(x)} f(t) dt.$$

Then,

$$F'(x) = f(h(x))h'(x) - f(g(x))g'(x).$$

It is an easy consequence of the chain rule:

4 Examples